Pneumology - Reviews
23 July 2025

Non-invasive ventilation in COVID-19-related acute hypoxemic respiratory failure: a narrative review

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
31
Views
21
Downloads

Authors

The high mortality rate and extended ventilator use associated with invasive mechanical ventilation in patients with severe COVID-19 have sparked a debate about the use of non-invasive respiratory support, such as high-flow nasal cannula, continuous positive airway pressure, and non-invasive ventilation (NIV), as treatment options. According to the European Respiratory Society and the American Thoracic Society clinical practice guidelines, NIV is recommended to prevent intubation in hypoxemic acute respiratory failure in patients with community-acquired pneumonia or early acute respiratory distress syndrome without major organ dysfunction. Central to this debate is the role of NIV in managing acute hypoxemic respiratory failure. However, there are concerns that NIV might delay the timely intubation and lung-protective ventilation in patients with more advanced disease, potentially worsening respiratory parameters due to self-inflicted lung injury. This review aims to explore the current literature, focusing on the rationale, patient selection, and outcomes associated with the use of NIV in COVID-19 patients with acute respiratory failure, to better understand its role in this context.

 

Vanvitelli - Monaldi COVID Group: Giulia Alaimo,1 Valentino Allocca,1 Lidia Atripaldi,1,2 Luca Borgese,1,2 Cecilia Calabrese,1,2 Nicola Carro,1 Donatella Cennamo,1,2 Francesco Saverio Cerqua,2 Roberta Cianci,2 Stefano Conte,1,2 Adriano Costigliola,2 Ilaria Di Fiore,1,2 Antonio D’Orologio,1,2 Ramona Fomez,1,2 Edoardo Grella,1 Serena Sardi,1 Carlo Iadevaia,1,2 Giuseppe Luciano,1 Dalila Manna,1,2 Umberto Masi,1,2 Grazia Mazzeo,2 Domenica Francesca Mariniello,1,2 Paola Medusa,1 Ersilia Nigro,3 Ilaria Palma,1 Antonio Ricci,1 Michela Ruotolo,1,2 Alessia Sola,1,2 Vittoria Ugliano1,2
1Department of Medical Translational Science, University of Campania "L. Vanvitelli", Naples; 2Pneumology Unit Vanvitelli A.O., Colli Monaldi Hospital, Naples; 3CEINGE-Biotecnologie Avanzate-Franco Salvatore, Naples, Italy

Altmetrics

Downloads

Download data is not yet available.

Citations

Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565-74. DOI: https://doi.org/10.1016/S0140-6736(20)30251-8
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016;3:237-61. DOI: https://doi.org/10.1146/annurev-virology-110615-042301
Komici K, Bianco A, Perrotta F, et al. Clinical characteristics, exercise capacity and pulmonary function in post-covid-19 competitive athletes. J Clin Med 2021;10;3053. DOI: https://doi.org/10.3390/jcm10143053
Perrotta F, Corbi G, Mazzeo G, et al. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res 2020;32:1599-608. DOI: https://doi.org/10.1007/s40520-020-01631-y
Mariniello DF, Aronne L, Vitale M, et al. Current challenges and perspectives in lung cancer care during COVID-19 waves. Curr Opin Pulm Med 2023;29:239-47. DOI: https://doi.org/10.1097/MCP.0000000000000967
Pagliaro R, Aronne L, Fomez R, et al. High-flow nasal cannula system in respiratory failure associated with interstitial lung diseases: a systematic review and narrative synthesis. J Clin Med 2024;13:2956. DOI: https://doi.org/10.3390/jcm13102956
Scialò F, Vitale M, D’Agnano V, et al. Lung microbiome as a treatable trait in chronic respiratory disorders. Lung 2023;201:455-66. DOI: https://doi.org/10.1007/s00408-023-00645-3
Perrotta F, Scialò F, Mallardo M, et al. Adiponectin, leptin, and resistin are dysregulated in patients infected by SARS-CoV-2. Int J Mol Sci 2023;24:1131. DOI: https://doi.org/10.3390/ijms24021131
Bianco A, Valente T, Perrotta F, et al. Remarkable vessel enlargement within lung consolidation in COVID-19 compared to AH1N1 pneumonia: a retrospective study in Italy. Heliyon 2021;7:e07112. DOI: https://doi.org/10.1016/j.heliyon.2021.e07112
Komici K, Bencivenga L, Rengo G, et al. Ventilatory efficiency in post-COVID-19 athletes. Physiol Rep 2023;11:e15795. DOI: https://doi.org/10.14814/phy2.15795
Matera MG, Rogliani P, Bianco A, et al. Pharmacological management of adult patients with acute respiratory distress syndrome. Expert Opin Pharmacother 2020;21:2169-83. DOI: https://doi.org/10.1080/14656566.2020.1801636
Czajkowska-Malinowska M, Kania A, Kuca PJ, et al. Treatment of acute respiratory failure in the course of COVID-19. Practical hints from the expert panel of the Assembly of Intensive Care and Rehabilitation of the Polish Respiratory Society. Adv Respir Med 2020;88:245-66. DOI: https://doi.org/10.5603/ARM.2020.0109
Scialo F, Daniele A, Amato F, et al. ACE2: the major cell entry receptor for SARS-CoV-2. Lung 2020;198:867-77. DOI: https://doi.org/10.1007/s00408-020-00408-4
Cazzola M, Ora J, Bianco A, et al. Guidance on nebulization during the current COVID-19 pandemic. Respir Med 2021;176:106236. DOI: https://doi.org/10.1016/j.rmed.2020.106236
Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631-7. DOI: https://doi.org/10.1002/path.1570
Mazzarella G, Esposito V, Bianco A, et al. Inflammatory effects on human lung epithelial cells after exposure to diesel exhaust micron sub particles [PM 1.0] and pollen allergens. Environ Pollut 2012;161:64-9. DOI: https://doi.org/10.1016/j.envpol.2011.09.046
Esposito V, Lucariello A, Savarese L, et al. Morphology changes in human lung epithelial cells after exposure to diesel exhaust micron sub particles [PM₁.₀] and pollen allergens. Environ Pollut 2012;171:162-7. DOI: https://doi.org/10.1016/j.envpol.2012.07.006
Scialo F, Vitale M, Daniele A, et al. SARS-CoV-2: One year in the pandemic. What have we learned, the new vaccine era and the threat of SARS-CoV-2 variants. Biomedicines 2021;9:611. DOI: https://doi.org/10.3390/biomedicines9060611
Rinaldi L, Lugarà M, Simeon V, et al. Application and internal validation of lung ultrasound score in COVID-19 setting: the ECOVITA observational study. Pulmonology 2025;31:2416842. DOI: https://doi.org/10.1016/j.pulmoe.2024.06.004
Barra M, Tomaiuolo G, Villella VR, et al. Organic electrochemical transistor immuno-sensors for spike protein early detection. Biosensors 2023;13:739. DOI: https://doi.org/10.3390/bios13070739
Cortese P, Amato F, Davino A, et al. The immune response to SARS-CoV-2 vaccine in a cohort of family pediatricians from southern Italy. Cells 2023;12:1447. DOI: https://doi.org/10.3390/cells12111447
Boccia M, Aronne L, Celia B, et al. COVID-19 and coagulative axis: review of emerging aspects in a novel disease. Monaldi Arch Chest Dis 2020;90:1300. DOI: https://doi.org/10.4081/monaldi.2020.1300
D'alonzo GE, Dantzker DR. Symposium on respiratory failure respiratory failure, mechanisms of abnormal gas exchange, and oxygen delivery. Med Clin North Am 1983;67:557-71. DOI: https://doi.org/10.1016/S0025-7125(16)31189-0
Lang M, Som A, Mendoza DP, et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet 2020;20:1365-6. DOI: https://doi.org/10.1016/S1473-3099(20)30367-4
Frat JP, Marchasson L, Arrivé F, Coudroy R. High-flow nasal cannula oxygen therapy in acute hypoxemic respiratory failure and COVID-19-related respiratory failure. J Intensive Med 2023;3:20-6. DOI: https://doi.org/10.1016/j.jointm.2022.07.005
Zhang H, Baker A. Recombinant human ACE2: acing out angiotensin II in ARDS therapy. Crit Care 2017;21:305. DOI: https://doi.org/10.1186/s13054-017-1882-z
Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020;20:363-74. DOI: https://doi.org/10.1038/s41577-020-0311-8
Weerakkody S, Arina P, Glenister J, et al. Non-invasive respiratory support in the management of acute COVID-19 pneumonia: considerations for clinical practice and priorities for research. Lancet Respir Med 2022;10:199-213. DOI: https://doi.org/10.1016/S2213-2600(21)00414-8
Cosentini R, Groff P, Brambilla AM, et al. SIMEU position paper on non-invasive respiratory support in COVID-19 pneumonia. Intern Emerg Med 2022;17:1175-89. DOI: https://doi.org/10.1007/s11739-021-02906-6
Scialò F, Mariniello DF, Nigro E, et al. Effects of different corticosteroid doses in elderly unvaccinated patients with severe to critical COVID-19. Life 2022;12:1924. DOI: https://doi.org/10.3390/life12111924
Parrella R, Marra A, Scarano F, et al. Corticosteroids and delayed conversion of SARS-CoV-2 RNA nasopharyngeal swabs in hospitalized patients with COVID 19 pneumonia. Arch Bronconeumol 2022;58:55-8. DOI: https://doi.org/10.1016/j.arbres.2021.11.007
RECOVERY Collaborative Group, Peter Horby, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021;384:693-704. DOI: https://doi.org/10.1056/NEJMoa2021436
Dostal P, Dostalova V. Practical aspects of esophageal pressure monitoring in patients with acute respiratory distress syndrome. J Pers Med 2023;13:136. DOI: https://doi.org/10.3390/jpm13010136
de Blasio F, Scalfi L, Di Gregorio A, et al. Raw bioelectrical impedance analysis variables are independent predictors of early all-cause mortality in patients with COPD. Chest 2019;155:1148-57. DOI: https://doi.org/10.1016/j.chest.2019.01.001
de Blasio F, de Blasio F, Miracco Berlingieri G, et al. Evaluation of body composition in COPD patients using multifrequency bioelectrical impedance analysis. Int J Chron Obstruct Pulmon Dis 2016;11:2419-26. DOI: https://doi.org/10.2147/COPD.S110364
Tobin MJ. Basing respiratory management of COVID-19 on physiological principles. Am J Respir Crit Care Med 2020;201:1319-20. DOI: https://doi.org/10.1164/rccm.202004-1076ED
Frat JP, Quenot JP, Badie J, et al. Effect of high-flow nasal cannula oxygen vs standard oxygen therapy on mortality in patients with respiratory failure due to COVID-19: the SOHO-COVID randomized clinical trial. JAMA 2022;328:1212-22. DOI: https://doi.org/10.1001/jama.2022.15613
Ni YN, Luo J, Yu H, et al. The effect of high-flow nasal cannula in reducing the mortality and the rate of endotracheal intubation when used before mechanical ventilation compared with conventional oxygen therapy and noninvasive positive pressure ventilation. A systematic review and meta-analysis. Am J Emerg Med 2018;36:226-33. DOI: https://doi.org/10.1016/j.ajem.2017.07.083
Grieco DL, Menga LS, Eleuteri D, et al. Patient self-inflicted lung injury: Implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol 2019;85:1014-23. DOI: https://doi.org/10.23736/S0375-9393.19.13418-9
Ospina-Tascón GA, Calderón-Tapia LE, García AF, et al. Effect of high-flow oxygen therapy vs conventional oxygen therapy on invasive mechanical ventilation and clinical recovery in patients with severe COVID-19: a randomized clinical trial. JAMA 2021;326:2161-71. DOI: https://doi.org/10.1001/jama.2022.1157
Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med 2020;46:854-87. DOI: https://doi.org/10.1007/s00134-020-06022-5
Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA 2020;323:2329-30. DOI: https://doi.org/10.1001/jama.2020.6825
Tsolaki V, Siempos I, Magira E, et al. PEEP levels in COVID-19 pneumonia. Crit Care 2020;24:303. DOI: https://doi.org/10.1186/s13054-020-03049-4
Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle region — case series. N Engl J Med 2020;382:2012-22. DOI: https://doi.org/10.1056/NEJMoa2004500
Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 2020;395:1763-70. DOI: https://doi.org/10.1016/S0140-6736(20)31189-2
Grieco DL, Bongiovanni F, Chen L, et al. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care 2020;24:529. DOI: https://doi.org/10.1186/s13054-020-03253-2
Ziehr DR, Alladina J, Petri CR, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med 2020;201:1560-4. DOI: https://doi.org/10.1164/rccm.202004-1163LE
Fu Y, Guan L, Wu W, et al. Non-invasive ventilation in patients with COVID-19-related acute hypoxemic respiratory failure: a retrospective cohort study. Front Med 2021;8:638201. DOI: https://doi.org/10.3389/fmed.2021.638201
Sullivan ZP, Zazzeron L, Berra L, et al. Non-invasive respiratory support for COVID-19 patients: when, for whom, and how? J Intensive Care 2022;10:3. DOI: https://doi.org/10.1186/s40560-021-00593-1
Winck JC, Scala R. Non-invasive respiratory support paths in hospitalized patients with Covid-19: proposal of an algorithm. Pulmonology 2021;27:305-12. DOI: https://doi.org/10.1016/j.pulmoe.2020.12.005
Battaglini D, Robba C, Ball L, et al. Non-invasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. Br J Anaesth 2021;127:353-64. DOI: https://doi.org/10.1016/j.bja.2021.05.024
Prediletto I, D'Antoni L, Carbonara P, et al. Standardizing PaO2 for PaCO2 in P/F ratio predicts in-hospital mortality in acute respiratory failure due to Covid-19: a pilot prospective study. Eur J Intern Med 2021;92:48-54. DOI: https://doi.org/10.1016/j.ejim.2021.06.002
Marra A, D’Agnano V, Pagliaro R, et al. SpO2/FiO2 correlates with PaO2/FiO2 (P/F) and radiological biomarkers of severity: a retrospective study on COVID-19 pneumonia patients. Biomedicines 2025;13:1072. DOI: https://doi.org/10.3390/biomedicines13051072
Bertaina M, Nuñez-Gil IJ, Franchin L, et al. Non-invasive ventilation for SARS-CoV-2 acute respiratory failure: a subanalysis from the HOPE COVID-19 registry. Emerg Med J 2021;38:359-65. DOI: https://doi.org/10.1136/emermed-2020-210411
Duca A, Memaj I, Zanardi F, et al. Severity of respiratory failure and outcome of patients needing a ventilatory support in the emergency department during Italian novel coronavirus SARS-CoV2 outbreak: preliminary data on the role of helmet CPAP and non-invasive positive pressure ventilation. EClinicalMedicine 2020;24:100419. DOI: https://doi.org/10.1016/j.eclinm.2020.100419
Faraone A, Beltrame C, Crociani A, et al. Effectiveness and safety of noninvasive positive pressure ventilation in the treatment of COVID-19-associated acute hypoxemic respiratory failure: a single center, non-ICU setting experience. Intern Emerg Med 2021;16:1183-90. DOI: https://doi.org/10.1007/s11739-020-02562-2
Hua J, Qian C, Luo Z, et al. Invasive mechanical ventilation in COVID-19 patient management: the experience with 469 patients in Wuhan. Crit Care 2020;24:348. DOI: https://doi.org/10.1186/s13054-020-03044-9
Grieco DL, Menga LS, Raggi V, et al. Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 2020;201:303-12. DOI: https://doi.org/10.1164/rccm.201904-0841OC
Bellani G, Grasselli G, Cecconi M, et al. Noninvasive ventilatory support of patients with covid-19 outside the intensive care units (ward-covid). Ann Am Thorac Soc 2021;18:1020-6. DOI: https://doi.org/10.1513/AnnalsATS.202008-1080OC
Wang Y, Lu X, Li Y, et al. Clinical course and outcomes of 344 intensive care patients with COVID-19. Am J Respir Crit Care Med 2020;201:1430-4. DOI: https://doi.org/10.1164/rccm.202003-0736LE
Alhazzani W, Moller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically Ill Adults with Coronavirus Disease 2019 [COVID-19]. Crit Care Med 2020;48:e440-69.
Karagiannidis C, Mostert C, Hentschker C, et al. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an observational study. Lancet Respir Med 2020;8:853-62. DOI: https://doi.org/10.1016/S2213-2600(20)30316-7
Burns GP, Lane ND, Tedd HM, et al. Improved survival following ward-based non-invasive pressure support for severe hypoxia in a cohort of frail patients with COVID-19: Retrospective analysis from a UK teaching hospital. BMJ Open Respir Res 2020;7:e000621. DOI: https://doi.org/10.1136/bmjresp-2020-000621
Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020;323:1574-81. DOI: https://doi.org/10.1001/jama.2020.5394
Perkins GD, Ji C, Connolly BA, et al. Effect of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxemic respiratory failure and COVID-19: the RECOVERY-RS randomized clinical trial. JAMA 2022;327:546-58. DOI: https://doi.org/10.1001/jama.2022.5276
Menga LS, Delle Cese L, Bongiovanni F, et al. High failure rate of noninvasive oxygenation strategies in critically ill subjects with acute hypoxemic respiratory failure due to covid-19. Respir Care 2021;66:705-14. DOI: https://doi.org/10.4187/respcare.08622
Privitera D, Angaroni L, Capsoni N, et al. Flowchart for non-invasive ventilation support in COVID-19 patients from a northern Italy Emergency Department. Intern Emerg Med 2020;15:767-71. DOI: https://doi.org/10.1007/s11739-020-02370-8
Radovanovic D, Rizzi M, Pini S, et al. Helmet cpap to treat acute hypoxemic respiratory failure in patients with covid-19: a management strategy proposal. J Clin Med 2020;9:1191. DOI: https://doi.org/10.3390/jcm9041191
Franco C, Facciolongo N, Tonelli R, et al. Feasibility and clinical impact of out-of-ICU noninvasive respiratory support in patients with COVID-19-related pneumonia. Eur Respir J 2020;56:2002130. DOI: https://doi.org/10.1183/13993003.02130-2020
Avdeev SN, Yaroshetskiy AI, Tsareva NA, et al. Noninvasive ventilation for acute hypoxemic respiratory failure in patients with COVID-19. Am J Emerg Med 2021;39:154-7. DOI: https://doi.org/10.1016/j.ajem.2020.09.075
Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med 2020;46:2200-11. DOI: https://doi.org/10.1007/s00134-020-06192-2
Malik GR, Wolfe AR, Soriano R, et al. Injury-prone: peripheral nerve injuries associated with prone positioning for COVID-19-related acute respiratory distress syndrome. Br J Anaesth 2020;125:e478-80. DOI: https://doi.org/10.1016/j.bja.2020.08.045
Botta M, Tsonas AM, Pillay J, et al. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study. Lancet Respir Med 2021;9:139-48. DOI: https://doi.org/10.1016/S2213-2600(20)30459-8
Rello J, Storti E, Belliato M, et al. Clinical phenotypes of SARS-CoV-2: implications for clinicians and researchers. Eur Respir J 2020;55:2001028. DOI: https://doi.org/10.1183/13993003.01028-2020
Vianello A, Arcaro G, Molena B, et al. High-flow nasal cannula oxygen therapy to treat patients with hypoxemic acute respiratory failure consequent to SARS-CoV-2 infection. Thorax 2020;75:998-1000. DOI: https://doi.org/10.1136/thoraxjnl-2020-214993
Wendel Garcia PD, Aguirre-Bermeo H, Buehler PK, et al. Implications of early respiratory support strategies on disease progression in critical COVID-19: a matched subanalysis of the prospective RISC-19-ICU cohort. Crit Care 2021;25:175. DOI: https://doi.org/10.1186/s13054-021-03580-y
Liu L, Xie J, Wu W, et al. A simple nomogram for predicting failure of noninvasive respiratory strategies in adults with COVID-19: a retrospective multicentre study. Lancet Digit Heal 2021;3:e166-74. DOI: https://doi.org/10.1016/S2589-7500(20)30316-2
Mukhtar A, Lotfy A, Hasanin A, et al. Outcome of noninvasive ventilation in COVID-19 critically ill patients: a retrospective observational study. Anaesth Crit Care Pain Med 2020;39:579-80. DOI: https://doi.org/10.1016/j.accpm.2020.07.012
Grieco DL, Menga LS, Cesarano M, et al. Effect of helmet noninvasive ventilation vs high-flow nasal oxygen on days free of respiratory support in patients with COVID-19 and moderate to severe hypoxemic respiratory failure: the HENIVOT randomized clinical trial. JAMA 2021;325:1731-43. DOI: https://doi.org/10.1001/jama.2021.4682
Sivaloganathan AA, Nasim-Mohi M, Brown MM, et al. Noninvasive ventilation for COVID-19-associated acute hypoxaemic respiratory failure: experience from a single centre. Br J Anaesth 2020;125:e368-71. DOI: https://doi.org/10.1016/j.bja.2020.07.008
Thomson RJ, Hunter J, Dutton J, et al. Clinical characteristics and outcomes of critically ill patients with COVID-19 admitted to an intensive care unit in London: a prospective observational cohort study. PLoS One 2020;15:e0243710. DOI: https://doi.org/10.1371/journal.pone.0243710
Wang K, Zhao W, Li J, et al. The experience of high-flow nasal cannula in hospitalized patients with 2019 novel coronavirus-infected pneumonia in two hospitals of Chongqing, China. Ann Intensive Care 2020;10:37. DOI: https://doi.org/10.1186/s13613-020-00653-z
Coppadoro A, Benini A, Fruscio R, et al. Helmet CPAP to treat hypoxic pneumonia outside the ICU: an observational study during the COVID-19 outbreak. Crit Care 2021;25:80. DOI: https://doi.org/10.1186/s13054-021-03502-y
Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med 2016;44:282-90. DOI: https://doi.org/10.1097/CCM.0000000000001379
Corrêa TD, Sanches PR, de Morais LC, et al. Performance of noninvasive ventilation in acute respiratory failure in critically ill patients: a prospective, observational, cohort study. BMC Pulm Med 2015;15:144. DOI: https://doi.org/10.1186/s12890-015-0139-3
Dhont S, Derom E, Van Braeckel E, et al. The pathophysiology of “happy” hypoxemia in COVID-19. Respir Res 2020;21:198. DOI: https://doi.org/10.1186/s12931-020-01462-5
Ye Z, Zhang Y, Wang Y, et al. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol 2020;30:4381-9. DOI: https://doi.org/10.1007/s00330-020-06801-0
Rosén J, von Oelreich E, Fors D, et al. Awake prone positioning in patients with hypoxemic respiratory failure due to COVID-19: the PROFLO multicenter randomized clinical trial. Crit Care 2021;25:209. DOI: https://doi.org/10.1186/s13054-021-03602-9
Longhini F, Bruni A, Garofalo E, et al. Helmet continuous positive airway pressure and prone positioning: a proposal for an early management of COVID-19 patients. Pulmonology 2020;26:186-91. DOI: https://doi.org/10.1016/j.pulmoe.2020.04.014
Menzella F, Barbieri C, Fontana M, et al. Effectiveness of noninvasive ventilation in COVID-19 related-acute respiratory distress syndrome. Clin Respir J 2021;15:779-87. DOI: https://doi.org/10.1111/crj.13361
Coppo A, Winterton D, Benini A, et al. Rodin's thinker: an alternative position in awake patients with COVID-19. Am J Respir Crit Care Med 2021;204:728-30. DOI: https://doi.org/10.1164/rccm.202104-0915LE

How to Cite



“Non-Invasive Ventilation in COVID-19-Related Acute Hypoxemic Respiratory Failure: A Narrative Review”. 2025. Monaldi Archives for Chest Disease, July. https://doi.org/10.4081/monaldi.2025.3432.