Imaging in transcatheter native mitral valve replacement with Tendyne mitral valve system: echocardiographic pathway for the interventional imager

Submitted: August 10, 2022
Accepted: September 1, 2022
Published: September 7, 2022
Abstract Views: 1142
PDF: 444
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The interaction between the implanter team and the imager team is critical to the success of transcatheter native mitral valve replacement (TMVR), a novel interventional procedure in the therapeutic arsenal for mitral regurgitation. This imaging scenario necessitates the addition of a new dedicated professional figure, dubbed "the interventional imager," with specific expertise in structural heart disease procedures. As its clinical application grows, knowledge of the various imaging modalities used in the TMVR procedure is required for the interventional imager and beneficial for the interventional implanter team. The purpose of this review is to describe the key steps of the procedural imaging pathway in TMVR using the Tendyne mitral valve system, with an emphasis on echocardiography. Pre-procedure cardiac multi-modality imaging screening and planning for TMVR can determine patient eligibility based on anatomic features and measurements, provide measurements for appropriate valve sizing, plan/simulate the access site, catheter/sheath trajectory, and pros- thesis positioning/orientation for correct deployment and predict the risks of potential procedural complications and their likelihood of success. Step-by-step echocardiographic TMVR intraoperative guidance includes: apical access assessment; support for catheter/sheath localization, trajectory and positioning, valve positioning and clocking; post deployment: correct clocking; hemodynamic assessment; detection of perivalvular leakage; obstruction of the left ventricular outlet tract; complications. Knowledge of the multimodality imaging pathway is essential for interventional imagers and critical to the procedure's success.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Iung B, Delgado V, Rosenhek R, et al. Contemporary presentation and management of valvular heart disease: The EURObservational Research Programme Valvular Heart Disease II Survey. Circulation 2019;140:1156-69. DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.041080
Kodali SK, Velagapudi P, Hahn RT, et al. valvular heart disease in patients ≥80 years of age. J Am Coll Cardiol 2018;71:2058-72. DOI: https://doi.org/10.1016/j.jacc.2018.03.459
Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2022;43:561-632. DOI: https://doi.org/10.1093/ejcts/ezac209
Tourkmani N. Treatment and management of advanced heart failure in elderly. Monaldi Arch Chest Dis 2019;89:1032. DOI: https://doi.org/10.4081/monaldi.2019.1032
Alperi A, Granada JF, Bernier M, et al. Current status and future prospects of transcatheter mitral valve replacement: JACC state-of-the-art review. J Am Coll Cardiol 2021;77:3058-78. DOI: https://doi.org/10.1016/j.jacc.2021.04.051
Hensey M, Brown RA, Lal S, et al. Transcatheter mitral valve replacement: An update on current techniques, technologies, and future directions. JACC Cardiovasc Interv 2021;14:489-500. DOI: https://doi.org/10.1016/j.jcin.2020.12.038
Russo G, Gennari M, Gavazzoni M, et al. Transcatheter mitral valve implantation: Current status and future perspectives. Circ Cardiovasc Interv 2021;14:e010628. DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.121.010628
Dahle G. Current devices in TMVI and their limitations: Focus on Tendyne. Front Cardiovasc Med 2020;7:592909. DOI: https://doi.org/10.3389/fcvm.2020.592909
Enta Y, Nakamura M. Transcatheter mitral valve replacement. J Cardiol 2021;77:555-64. DOI: https://doi.org/10.1016/j.jjcc.2020.10.020
Kargoli F, Pagnesi M, Rahgozar K, et al. Current devices and complications related to transcatheter mitral valve replacement: The bumpy road to the top. Front Cardiovasc Med 2021;8:639058. DOI: https://doi.org/10.3389/fcvm.2021.639058
Rodés-Cabau J, Regueiro A, Mack MJ. Transcatheter mitral valve replacement: A need for better patient selection. J Am Coll Cardiol 2021;78:1860-2. DOI: https://doi.org/10.1016/j.jacc.2021.08.062
Ben Ali W, Ludwig S, Duncan A, Weimann J, et al. Characteristics and outcomes of patients screened for transcatheter mitral valve implantation: 1-year results from the CHOICE-MI registry. Eur J Heart Fail 2022;24:887-98. DOI: https://doi.org/10.1055/s-0042-1742891
Violini R, Cifarelli A, De Felice F, Chin D. Treatment of mitral regurgitation. Monaldi Arch Chest Dis 2017;87:854. DOI: https://doi.org/10.4081/monaldi.2017.854
Niikura H, Gössl M, Sorajja P. Transcatheter mitral valve replacement with Tendyne. Interv Cardiol Clin 2019;8:295-300. DOI: https://doi.org/10.1016/j.iccl.2019.02.003
Sorajja P, Cavalcante JL, Gössl M. The need for transcatheter mitral valve replacement. J Am Coll Cardiol 2019;73:1247-9. DOI: https://doi.org/10.1016/j.jacc.2018.11.062
Gheorghe LL, Mobasseri S, Agricola E, et al. Imaging for native mitral valve surgical and transcatheter interventions. JACC Cardiovasc Imaging 2021;14:112-27. DOI: https://doi.org/10.1016/j.jcmg.2020.11.021
Barreiro-Perez M, Caneiro-Queija B, Puga L, et al. Imaging in transcatheter mitral valve replacement: State-of-art review. J Clin Med 2021;10:5973. DOI: https://doi.org/10.3390/jcm10245973
Garcia-Sayan E, Chen T, Khalique OK. Multimodality cardiac imaging for procedural planning and guidance of transcatheter mitral valve replacement and mitral paravalvular leak closure. Front Cardiovasc Med 2021;8:582925. DOI: https://doi.org/10.3389/fcvm.2021.582925
Mackensen GB, Lee JC, Wang DD, et al. Role of echocardiography in transcatheter mitral valve replacement in native mitral valves and mitral rings. J Am Soc Echocardiogr 2018;31:475-90. DOI: https://doi.org/10.1016/j.echo.2018.01.011
Faza NN, Little SH. Role of 3-dimensional transesophageal echocardiography in guiding transcatheter mitral valve replacement. Echocardiography 2020;37:945-53. DOI: https://doi.org/10.1111/echo.14712
Ludwig S, Ruebsamen N, Deuschl F, et al. Screening for transcatheter mitral valve replacement: a decision tree algorithm. EuroIntervention 2020;16:251-8. DOI: https://doi.org/10.4244/EIJ-D-19-01051
Lang RM, Addetia K, Narang A, Mor-Avi V. 3-Dimensional echocardiography: Latest developments and future directions. JACC Cardiovasc Imaging. 2018;11:1854-78. DOI: https://doi.org/10.1016/j.jcmg.2018.06.024
Ge Y, Gupta S, Fentanes E, et al. Role of cardiac CT in pre-procedure planning for transcatheter mitral valve replacement. JACC Cardiovasc Imaging 2021;14:1571-80. DOI: https://doi.org/10.1016/j.jcmg.2020.12.018
Galzerano D, Kinsara AJ, Di Michele S, et al. Three dimensional transesophageal echocardiography: a missing link in infective endocarditis imaging? Int J Cardiovasc Imaging 2020;36:403-13. DOI: https://doi.org/10.1007/s10554-019-01747-x
Agricola E, Ancona F, Brochet E, et al. The structural heart disease interventional imager rationale, skills and training: a position paper of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2021;22:471-9. DOI: https://doi.org/10.1093/ehjci/jeab005
Agricola E, Meucci F, Ancona F, et al. Echocardiographic guidance in transcatheter structural cardiac interventions. EuroIntervention 2022;17:1205-26. DOI: https://doi.org/10.4244/EIJ-D-21-00582
Sorajja P, Moat N, Badhwar V, et al. Initial feasibility study of a new transcatheter mitral prosthesis: The first 100 patients. J Am Coll Cardiol. 2019;73:1250-60. DOI: https://doi.org/10.1016/j.jacc.2018.12.066
Muller DWM, Sorajja P, Duncan A, et al. 2-Year outcomes of transcatheter mitral valve replacement in patients with severe symptomatic mitral regurgitation. J Am Coll Cardiol 2021;78:1847-59. DOI: https://doi.org/10.1016/j.jacc.2021.08.060
Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 2017;30:303-71. DOI: https://doi.org/10.1016/j.echo.2017.01.007
Sorajja P, Gössl M, Babaliaros V, et al. Novel transcatheter mitral valve prosthesis for patients with severe mitral annular calcification. J Am Coll Cardiol 2019;74:1431-40. DOI: https://doi.org/10.1016/j.jacc.2019.07.069
Hungerford S, Hayward C, Muller DWM. Transapical transcatheter mitral valve implantation in heart failure: Haemodynamic challenges for a new frontier. Heart Lung Circ 2022;31:42-8. DOI: https://doi.org/10.1016/j.hlc.2021.07.014
Hungerford S, Bart N, Jansz P, et al. Improved right ventricular function following transapical transcatheter mitral valve implantation for severe mitral regurgitation. Int J Cardiol Heart Vasc 2021;32:100687. DOI: https://doi.org/10.1016/j.ijcha.2020.100687
Reid A, Ben Zekry S, Turaga M, et al. Neo-LVOT and transcatheter mitral valve replacement: Expert recommendations. JACC Cardiovasc Imaging 2021;14:854-66. DOI: https://doi.org/10.1016/j.jcmg.2020.09.027
Blanke P, Naoum C, Dvir D, et al. Predicting LVOT obstruction in transcatheter mitral valve implantation: Concept of the neo-LVOT. JACC Cardiovasc Imaging 2017;10:82-5. DOI: https://doi.org/10.1016/j.jcmg.2016.01.005
Herrmann HC, Maisano F. Transcatheter therapy of mitral regurgitation. Circulation 2014;130:1712-22. DOI: https://doi.org/10.1161/CIRCULATIONAHA.114.009881
Blanke P, Naoum C, Webb J, et al. Multimodality imaging in the context of transcatheter mitral valve replacement: Establishing consensus among modalities and disciplines. JACC Cardiovasc Imaging 2015;8:1191-208. DOI: https://doi.org/10.1016/j.jcmg.2015.08.004
Khan JM, Trivedi U, Gomes A, et al. "Rescue" LAMPOON to treat transcatheter mitral valve replacement-associated left ventricular outflow tract obstruction. JACC Cardiovasc Interv 2019;12:1283-4. DOI: https://doi.org/10.1016/j.jcin.2018.12.026
Wang DD, Eng M, Greenbaum A, et al. Predicting LVOT obstruction after TMVR. JACC Cardiovasc Imaging 2016;9:1349-52. DOI: https://doi.org/10.1016/j.jcmg.2016.01.017
Wang DD, Eng MH, Greenbaum AB, et al. Validating a prediction modeling tool for left ventricular outflow tract (LVOT) obstruction after transcatheter mitral valve replacement (TMVR). Catheter Cardiovasc Interv 2018;92:379-87. DOI: https://doi.org/10.1002/ccd.27447
Khan JM, Rogers T, Schenke WH, et al. Intentional laceration of the anterior mitral valve leaflet to prevent left ventricular outflow tract obstruction during transcatheter mitral valve replacement: Pre-clinical findings. JACC Cardiovasc Interv 2016;9:1835-43. DOI: https://doi.org/10.1016/j.jcin.2016.06.020

How to Cite

Al Sergani, Hani, Antonella Moreo, Eduardo Bossone, Olga Vriz, Ali Alenazy, Ahmed Alshehri, Mohammed Al Amri, Ahmad Alhamshari, Bandar Alamro, and Domenico Galzerano. 2022. “Imaging in Transcatheter Native Mitral Valve Replacement With Tendyne Mitral Valve System: Echocardiographic Pathway for the Interventional Imager”. Monaldi Archives for Chest Disease 93 (2). https://doi.org/10.4081/monaldi.2022.2404.