Pneumology - Reviews
June 5, 2025

Approach to mechanical ventilation: a simplified approach for a pulmonologist

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
41
Views
13
Downloads

Authors

Mechanical ventilation is a critical intervention for patients with respiratory failure, providing essential support for oxygenation and ventilation while reducing the work of breathing. It operates through key breath-phase variables: triggering (breath initiation), targeting (flow or pressure delivery), and cycling (ending inspiration). Various ventilation modes, including invasive and non-invasive methods, are tailored to patient needs. Non-invasive ventilation and high-flow nasal cannula are first-line options in acute respiratory distress, whereas invasive mechanical ventilation is necessary for severe cases. Optimal ventilatory strategies aim to prevent complications such as barotrauma, volutrauma, and dynamic hyperinflation by carefully adjusting parameters like tidal volume, respiratory rate, and positive end-expiratory pressure. One major challenge in mechanical ventilation is patient-ventilator dyssynchrony, where the patient’s respiratory efforts do not align with the ventilator’s cycles, leading to increased work of breathing and discomfort. Dyssynchrony can occur during the trigger, target, or cycle phases, requiring waveform analysis and ventilator adjustments to optimize synchrony. Weaning from mechanical ventilation follows a structured process involving readiness assessment, spontaneous breathing trials, and extubation. Successful weaning depends on maintaining stable respiratory function, with close monitoring to prevent post-extubation failure. Identifying and managing ventilatory complications, optimizing patient comfort, and ensuring an individualized approach to ventilator management are key to improving patient outcomes. This review provides a comprehensive understanding of mechanical ventilation, its principles, common challenges, and weaning strategies to guide effective clinical decision-making.

Altmetrics

Downloads

Download data is not yet available.

Citations

Goligher EC, Fan E. Mechanical ventilation. In: Textbook of respiratory medicine. Broaddus V, Courtney MD, eds. Amsterdam: Elsevier; 2022.
Colice GL. Chapter 1. Historical perspective on the development of mechanical ventilation. In: Principles and practice of mechanical ventilation. Tobin MJ, ed. New York, NY: The McGraw-Hill Companies; 2013.
Ibsen B. The anaesthetist’s viewpoint on the treatment of respiratory complications in poliomyelitis during the epidemic in Copenhagen, 1952. Proc R Soc Med 1954;47:72-4. DOI: https://doi.org/10.1177/003591575404700120
Engström CG. Treatment of severe cases of respiratory paralysis by the Engström universal respirator. Br Med J 1954;2:666-9. DOI: https://doi.org/10.1136/bmj.2.4889.666
Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967;2:319-23. DOI: https://doi.org/10.1016/S0140-6736(67)90168-7
Ingelstedt S, Jonson B, Nordström L, Olsson SG. A servo-controlled ventilator measuring expired minute volume, airway flow and pressure. Acta Anaesthesiol Scand Suppl 1972;47:7-27. DOI: https://doi.org/10.1111/j.1399-6576.1972.tb00593.x
Tobin MJ. Mechanical ventilation. N Engl J Med 1994;330:1056-61. DOI: https://doi.org/10.1056/NEJM199404143301507
Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the art. Mayo Clin Proc 2017;92:1382-400. DOI: https://doi.org/10.1016/j.mayocp.2017.05.004
Henderson WR, Chen L, Amato MBP, Brochard LJ. Fifty years of research in ARDS. Respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017;196:822-33. DOI: https://doi.org/10.1164/rccm.201612-2495CI
Poor H. Respiratory mechanics. In: Basics of mechanical ventilation. Poor H, ed. Cham: Springer International Publishing; 2018. DOI: https://doi.org/10.1007/978-3-319-89981-7
Mushin WW, Rendell-Baker L, Thompson PW. Automatic ventilation of the lungs. Oxford: Blackwell Scientific; 1959.
Consensus statement on the essentials of mechanical ventilators--1992. American Association for Respiratory Care. Respir Care 1992;37:1000-8.
Yang SC, Yang SP. Effects of inspiratory flow waveforms on lung mechanics, gas exchange, and respiratory metabolism in COPD patients during mechanical ventilation. Chest 2002;122:2096-104. DOI: https://doi.org/10.1378/chest.122.6.2096
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012;307:2526-33. DOI: https://doi.org/10.1001/jama.2012.5669
Lazzeri C, Peris A. The Kigali modification of the berlin definition: a new epidemiological tool for ARDS? J Thorac Dis 2016;8:E443-5. DOI: https://doi.org/10.21037/jtd.2016.03.84
Riviello ED, Kiviri W, Twagirumugabe T, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the kigali modification of the Berlin definition. Am J Respir Crit Care Med 2016;193:52-9. DOI: https://doi.org/10.1164/rccm.201503-0584OC
Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 1998;157:294-323. DOI: https://doi.org/10.1164/ajrccm.157.1.9604014
Gattinoni L, Protti A, Caironi P, Carlesso E. Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med 2010;38:S539-48. DOI: https://doi.org/10.1097/CCM.0b013e3181f1fcf7
Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 2000;284:43-4. DOI: https://doi.org/10.1001/jama.284.1.43
Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury. Clin Chest Med 2016;37:633-46. DOI: https://doi.org/10.1016/j.ccm.2016.07.004
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301-8. DOI: https://doi.org/10.1056/NEJM200005043421801
Griffiths MJD, McAuley DF, Perkins GD, et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Resp Res 2019;6:e000420. DOI: https://doi.org/10.1136/bmjresp-2019-000420
Dianti J, Tisminetzky M, Ferreyro BL, et al. Association of positive end-expiratory pressure and lung recruitment selection strategies with mortality in acute respiratory distress syndrome: a systematic review and network meta-analysis. Am J Respir Crit Care Med 2022;205:1300-10. DOI: https://doi.org/10.1164/rccm.202108-1972OC
Barrot L, Asfar P, mauny f, et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med 2020;382:999-1008. DOI: https://doi.org/10.1056/NEJMoa1916431
Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J 2002;20:1017-28. DOI: https://doi.org/10.1183/09031936.02.00401702
Guérin C, Albert RK, Beitler J, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med 2020;46:2385-96. DOI: https://doi.org/10.1007/s00134-020-06306-w
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159-68. DOI: https://doi.org/10.1056/NEJMoa1214103
Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013;188:1420-7. DOI: https://doi.org/10.1164/rccm.201303-0539OC
National Heart, Lung, and Blood Institute PETAL Clinical Trials Network, Moss M, Huang DT, et al. early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med 2019;380:1997-2008. DOI: https://doi.org/10.1056/NEJMoa1901686
Combes A, Peek GJ, Hajage D, et al. ECMO for severe ARDS: systematic review and individual patient data meta-analysis. Intensive Care Med 2020;46:2048-57. DOI: https://doi.org/10.1007/s00134-020-06248-3
Chaudhuri D, Sasaki K, Karkar A, et al. Corticosteroids in COVID-19 and non-COVID-19 ARDS: a systematic review and meta-analysis. Intensive Care Med 2021;47:521-37. DOI: https://doi.org/10.1007/s00134-021-06394-2
Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020;8:267-76. DOI: https://doi.org/10.1016/S2213-2600(19)30417-5
Annane D, Pastores SM, Rochwerg B, et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med 2017;45:2078-88. DOI: https://doi.org/10.1097/CCM.0000000000002737
Erram J, Bari M, Cannon D. Measuring airway resistance and characterizing the flow-volume envelope with external expiratory loading in healthy adults. FASEB J 2020;34:1. DOI: https://doi.org/10.1096/fasebj.2020.34.s1.09394
Milic-Emili J. Expiratory flow limitation: Roger S. Mitchell Lecture. Chest 2000;117:219S-23S. DOI: https://doi.org/10.1378/chest.117.5_suppl_1.219S-a
Vassilakopoulos T. Understanding wasted/ineffective efforts in mechanically ventilated COPD patients using the Campbell diagram. Intensive Care Med 2008;34:1336-9. DOI: https://doi.org/10.1007/s00134-008-1095-7
Vassilakopoulos T, Toumpanakis D, Mancebo J. What’s new about pulmonary hyperinflation in mechanically ventilated critical patients. Intensive Care Med 2020;46:2381-84. DOI: https://doi.org/10.1007/s00134-020-06105-3
Purro A, Appendini L, De Gaetano A, et al. Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients. Am J Respir Crit Care Med 2000;161:1115-23. DOI: https://doi.org/10.1164/ajrccm.161.4.9812160
Petrof BJ, Legaré M, Goldberg P, et al. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 1990;141:281-9. DOI: https://doi.org/10.1164/ajrccm/141.2.281
Reddy RM, Guntupalli KK. Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2007;2:441-52.
Davidson AC, Banham S, Elliott M, et al. BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults. Thorax 2016;71:ii1-35. DOI: https://doi.org/10.1136/thoraxjnl-2015-208209
Gupta N, Malhotra N, Ish P. GOLD 2021 guidelines for COPD - what’s new and why. Adv Respir Med 2021;89:344-6. DOI: https://doi.org/10.5603/ARM.a2021.0015
Ahmed SM, Athar M. Mechanical ventilation in patients with chronic obstructive pulmonary disease and bronchial asthma. Indian J Anaesth 2015;59:589-98. DOI: https://doi.org/10.4103/0019-5049.165856
Ouellette DR, Patel S, Girard TD, et al. Liberation from mechanical ventilation in critically ill adults: an official American College of Chest Physicians/American Thoracic Society clinical practice guideline: inspiratory pressure augmentation during spontaneous breathing trials, protocols minimizing sedation, and noninvasive ventilation immediately after extubation. Chest 2017;151:166-80. DOI: https://doi.org/10.1016/j.chest.2016.10.036
Esteban A, Ferguson ND, Meade MO, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med 2008;177:170-7. DOI: https://doi.org/10.1164/rccm.200706-893OC

How to Cite



“Approach to Mechanical Ventilation: A Simplified Approach for a Pulmonologist”. 2025. Monaldi Archives for Chest Disease, June. https://doi.org/10.4081/monaldi.2025.3476.