The current paradigm of cardiac troponin increase among athletes

Submitted: December 13, 2023
Accepted: March 16, 2024
Published: April 30, 2024
Abstract Views: 554
PDF_EARLY VIEW: 147
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Although it is known that exercise improves cardiovascular health and extends life expectancy, a significant number of people may also experience an elevation in cardiac troponin levels as a result of exercise. For many years, researchers have argued whether exercise-induced cardiac troponin rises are a consequence of a physiological or pathological reaction and whether they are clinically significant. Differences in cardiac troponin elevation and cardiac remodeling can be seen between athletes participating in different types of sports. When forecasting the exercise-induced cardiac troponin rise, there are many additional parameters to consider, as there is a large amount of interindividual heterogeneity in the degree of cardiac troponin elevation. Although it was previously believed that cardiac troponin increases in athletes represented a benign phenomenon, numerous recent studies disproved this notion by demonstrating that, in specific individuals, cardiac troponin increases may have clinical and prognostic repercussions. This review aims to examine the role of cardiac troponin in athletes and its role in various sporting contexts. This review also discusses potential prognostic and clinical implications, as well as future research methods, and provides a straightforward step-by-step algorithm to help clinicians interpret cardiac troponin rise in athletes in both ischemic and non-ischemic circumstances.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ 2006;174:801-9. DOI: https://doi.org/10.1503/cmaj.051351
Lear SA, Hu W, Rangarajan S, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet 2017;390:2643-54. DOI: https://doi.org/10.1016/S0140-6736(17)31634-3
Anderson L, Oldridge N, Thompson DR, et al. Exercise-based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta-analysis. J Am Coll Cardiol 2016;67:1-12. DOI: https://doi.org/10.1002/14651858.CD001800.pub3
Pelliccia A, Sharma S, Gati S, et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J 2021;42:17-96. DOI: https://doi.org/10.1093/eurheartj/ehaa735
Siegel AJ, Lewandrowski KB, Strauss HW, et al. Normal post-race antimyosin myocardial scintigraphy in asymptomatic marathon runners with elevated serum creatine kinase MB isoenzyme and troponin T levels. Evidence against silent myocardial cell necrosis. Cardiology 1995;86:451-6. DOI: https://doi.org/10.1159/000176922
Laslett L, Eisenbud E, Lind R. Evidence of myocardial injury during prolonged strenuous exercise. Am J Cardiol 1996;78:488-90. DOI: https://doi.org/10.1016/0002-9149(97)00003-9
Cirer-Sastre R, Legaz-Arrese A, Corbi F, et al. Influence of maturational status in the exercise-induced release of cardiac troponin T in healthy young swimmers. J Sci Med Sport 2021;24:116-21. DOI: https://doi.org/10.1016/j.jsams.2020.06.019
Thygesen K, Mair J, Katus H, et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J 2010;31:2197-204. DOI: https://doi.org/10.1093/eurheartj/ehq251
Parmacek MS, Solaro RJ. Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis 2004;47:159-76. DOI: https://doi.org/10.1016/j.pcad.2004.07.003
Wu AHB, Christenson RH. Analytical and assay issues for use of cardiac troponin testing for risk stratification in primary care. Clin Biochem 2013;46:969-78. DOI: https://doi.org/10.1016/j.clinbiochem.2013.04.013
Hickman PE, Potter JM, Aroney C, et al. Cardiac troponin may be released by ischemia alone, without necrosis. Clin Chim Acta 2010;411:318-23. DOI: https://doi.org/10.1016/j.cca.2009.12.009
Rittoo D, Jones A, Lecky B, et al. Elevation of cardiac troponin T, but not cardiac troponin I, in patients with neuromuscular diseases: implications for the diagnosis of myocardial infarction. J Am Coll Cardiol 2014;63:2411-20. DOI: https://doi.org/10.1016/j.jacc.2014.03.027
Jaffe AS, Vasile VC, Milone M, et al. Diseased skeletal muscle: a noncardiac source of increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol 2011;58:1819-24. DOI: https://doi.org/10.1016/j.jacc.2011.08.026
Twerenbold R, Jaffe A, Reichlin T, et al. High-sensitive troponin T measurements: what do we gain and what are the challenges? Eur Heart J 2012;33:579-86. DOI: https://doi.org/10.1093/eurheartj/ehr492
Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Circulation 2018;138:e618-51. DOI: https://doi.org/10.1161/CIR.0000000000000617
Keller T, Zeller T, Peetz D, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med 2009;361:868-77. DOI: https://doi.org/10.1056/NEJMoa0903515
Weil BR, Suzuki G, Young RF, et al. Troponin release and reversible left ventricular dysfunction after transient pressure overload. J Am Coll Cardiol 2018;71:2906-16. DOI: https://doi.org/10.1016/j.jacc.2018.04.029
Siriwardena M, Campbell V, Richards AM, et al. Cardiac biomarker responses to dobutamine stress echocardiography in healthy volunteers and patients with coronary artery disease. Clin Chem 2012;58:1492-4. DOI: https://doi.org/10.1373/clinchem.2012.187682
Gresslien T, Agewall S. Troponin and exercise. Int J Cardiol 2016;221:609-21. DOI: https://doi.org/10.1016/j.ijcard.2016.06.243
Newby LK, Jesse RL, Babb JD, et al. ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation task force on clinical expert consensus documents. J Am Coll Cardiol 2012;60:2427-63. DOI: https://doi.org/10.1016/j.jacc.2012.08.969
Cummins P, Young A, Auckland ML, et al. Comparison of serum cardiac specific troponin-I with creatine kinase, creatine kinase-MB isoenzyme, tropomyosin, myoglobin and C-reactive protein release in marathon runners: cardiac or skeletal muscle trauma?. Eur J Clin Invest 1987;17:317-24. DOI: https://doi.org/10.1111/j.1365-2362.1987.tb02194.x
Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L, et al. Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury--a metaanalysis of 45 studies. Clin Chem 2015;61:1246-55. DOI: https://doi.org/10.1373/clinchem.2015.240796
Aengevaeren VL, Baggish AL, Chung EH, et al. Exercise-induced cardiac troponin elevations: from underlying mechanisms to clinical relevance. Circulation 2021;144:1955-72. DOI: https://doi.org/10.1161/CIRCULATIONAHA.121.056208
Kleiven Ø, Omland T, Skadberg Ø, et al. Race duration and blood pressure are major predictors of exercise-induced cardiac troponin elevation. Int J Cardiol 2019;283:1-8. DOI: https://doi.org/10.1016/j.ijcard.2019.02.044
Fortescue EB, Shin AY, Greenes DS, et al. Cardiac troponin increases among runners in the Boston Marathon. Ann Emerg Med 2007;49:137-43. DOI: https://doi.org/10.1016/j.annemergmed.2006.09.024
Neilan TG, Januzzi JL, Lee-Lewandrowski E, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 2006;114:2325-33. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.647461
Eijsvogels TM, Hoogerwerf MD, Oudegeest-Sander MH, et al. The impact of exercise intensity on cardiac troponin I release. Int J Cardiol 2014;17:e3-4. DOI: https://doi.org/10.1016/j.ijcard.2013.11.050
Müller-Bardorff M, Hallermayer K, Schröder A, et al. Improved troponin T ELISA specific for cardiac troponin T isoform: assay development and analytical and clinical validation. Clin Chem 1997;43:458-66. DOI: https://doi.org/10.1093/clinchem/43.3.458
Vilela EM, Bastos JC, Rodrigues RP, et al. High-sensitivity troponin after running--a systematic review. Neth J Med 2014;72:5-9.
Mitchell JH, Haskell W, Snell P, et al. Task Force 8: classification of sports. J Am Coll Cardiol 2005;45:1364-7. DOI: https://doi.org/10.1016/j.jacc.2005.02.015
Levine BD, Baggish AL, Kovacs RJ, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 1: classification of sports: dynamic, static, and impact: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol 2015;66:2350-5. DOI: https://doi.org/10.1161/CIR.0000000000000237
Niebauer J, Börjesson M, Carre F, et al. Brief recommendations for participation in competitive sports of athletes with arterial hypertension: summary of a position statement from the sports cardiology section of the European Association of Preventive Cardiology (EAPC). Eur J Prev Cardiol 2019;26:1549-55. DOI: https://doi.org/10.1177/2047487319852807
Tian Y, Nie J, Huang C, George KP. The kinetics of highly sensitive cardiac troponin T release after prolonged treadmill exercise in adolescent and adult athletes. J Appl Physiol (1985) 2012;113:418-25. DOI: https://doi.org/10.1152/japplphysiol.00247.2012
Shave R, Baggish A, George K, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol 2010;56:169-76. DOI: https://doi.org/10.1016/j.jacc.2010.03.037
Niemelä M, Kangastupa P, Niemelä O, et al. Individual responses in biomarkers of health after marathon and half-marathon running: is age a factor in troponin changes?. Scand J Clin Lab Invest 2016;76:575-80. DOI: https://doi.org/10.1080/00365513.2016.1225122
Kannankeril PJ, Pahl E, Wax DF. Usefulness of troponin I as a marker of myocardial injury after pediatric cardiac catheterization. Am J Cardiol 2002;90:1128-32. DOI: https://doi.org/10.1016/S0002-9149(02)02781-9
Cirer-Sastre R, Jiménez-Gaytán R, Carranza-García LE, et al. A comparison of modelled serum cTnT and cTnI kinetics after 60 min swimming. Biomarkers 2022;27:619-24. DOI: https://doi.org/10.1080/1354750X.2022.2080272
Tesema G, George M. Associations between cardiac troponin I and cardiovascular parameters after 12-week endurance training in young moderately trained amateur athletes. BMJ Open Sport Exerc Med 2021;7:e001065. DOI: https://doi.org/10.1136/bmjsem-2021-001065
Sze J, Mooney J, Barzi F, et al. Cardiac troponin and its relationship to cardiovascular outcomes in community populations: a systematic review and meta-analysis. Heart Lung Circ 2016;25:217-28. DOI: https://doi.org/10.1016/j.hlc.2015.09.001
Neumayr G, Pfister R, Mitterbauer G, et al. Effect of the "Race Across The Alps" in elite cyclists on plasma cardiac troponins I and T. Am J Cardiol 2002;89:484-6. DOI: https://doi.org/10.1016/S0002-9149(01)02280-9
Williams K, George K, Hulton A, et al. A unique case series of novel biomarkers of cardiac damage in cyclists completing the 4800 km Race Across America (RAAM). Curr Med Chem 2011;18:3446-51. DOI: https://doi.org/10.2174/092986711796642616
Nie J, Tong TK, Shi Q, et al. Serum cardiac troponin response in adolescents playing basketball. Int J Sports Med 2008;29:449-52. DOI: https://doi.org/10.1055/s-2007-989236
Wedin JO, Henriksson AE. Postgame elevation of cardiac markers among elite floorball players. Scand J Med Sci Sports 2015;25:495-500. DOI: https://doi.org/10.1111/sms.12304
George KP, Dawson E, Shave RE, et al. Left ventricular systolic function and diastolic filling after intermittent high intensity team sports. Br J Sports Med 2004;38:452-6. DOI: https://doi.org/10.1136/bjsm.2003.004788
Rahnama N, Faramarzi M, Gaeini AA. Effects of intermittent exercise on cardiac troponin I and creatine kinase-MB. Int J Prev Med 2011;2:20-3.
Stephenson C, McCarthy J, Vikelis E, et al. Effect of weightlifting upon left ventricular function and markers of cardiomyocyte damage. Ergonomics 2005;48:1585-93. DOI: https://doi.org/10.1080/00140130500101114
Carranza-García LE, George K, Serrano-Ostáriz E, et al. Cardiac biomarker response to intermittent exercise bouts. Int J Sports Med 2011;32:327-31. DOI: https://doi.org/10.1055/s-0030-1263138
Shave R, George KP, Atkinson G, et al. Exercise-induced cardiac troponin T release: a meta-analysis. Med Sci Sports Exerc 2007;39:2099-106. DOI: https://doi.org/10.1249/mss.0b013e318153ff78
Lanza GA, Mencarelli E, Melita V, et al. Post-exercise high-sensitivity troponin T levels in patients with suspected unstable angina. PLoS One 2019;14:e0222230. DOI: https://doi.org/10.1371/journal.pone.0222230
Kokowicz P, Stec S, Flasińska K, et al. Troponin release following exercise test in patients with stable angina pectoris - risk factors and prognostic significance. Kardiol Pol 2010;68:414-21.
Aengevaeren VL, Hopman MTE, Thompson PD, et al. Exercise-induced cardiac troponin i increase and incident mortality and cardiovascular events. Circulation 2019;140:804-14. DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.041627
Hammadah M, Al Mheid I, Wilmot K, et al. Association between high-sensitivity cardiac troponin levels and myocardial ischemia during mental stress and conventional stress. JACC Cardiovasc Imaging 2018;11:603-11. DOI: https://doi.org/10.1016/j.jcmg.2016.11.021
Samaha E, Brown J, Brown F, et al. High-sensitivity cardiac troponin T increases after stress echocardiography. Clin Biochem 2019;63:18-23. DOI: https://doi.org/10.1016/j.clinbiochem.2018.11.013
Tveit SH, Cwikiel J, Myhre PL, et al. Differential associations of cardiac troponin T and cardiac troponin I with coronary artery pathology and dynamics in response to short-duration exercise. Clin Biochem 2021;88:23-9. DOI: https://doi.org/10.1016/j.clinbiochem.2020.11.005
Bjørkavoll-Bergseth M, Kleiven Ø, Auestad B, et al. Duration of elevated heart rate is an important predictor of exercise-induced troponin elevation. J Am Heart Assoc 2020;9:e014408. DOI: https://doi.org/10.1161/JAHA.119.014408
Kleiven Ø, Omland T, Skadberg Ø, et al. Occult obstructive coronary artery disease is associated with prolonged cardiac troponin elevation following strenuous exercise. Eur J Prev Cardiol 2020;27:1212-21. DOI: https://doi.org/10.1177/2047487319852808
Möhlenkamp S, Leineweber K, Lehmann N, et al. Coronary atherosclerosis burden, but not transient troponin elevation, predicts long-term outcome in recreational marathon runners. Basic Res Cardiol 2014;109:391. DOI: https://doi.org/10.1007/s00395-013-0391-8
Sarna S, Sahi T, Koskenvuo M, et al. Increased life expectancy of world class male athletes. Med Sci Sports Exerc 1993;25:237-44. DOI: https://doi.org/10.1249/00005768-199302000-00013
Roberts WO, Maron BJ. Evidence for decreasing occurrence of sudden cardiac death associated with the marathon. J Am Coll Cardiol 2005;46:1373-4. DOI: https://doi.org/10.1016/j.jacc.2005.07.008
Paffenbarger RS Jr, Hyde RT, Wing AL, et al. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med 1993;328:538-45. DOI: https://doi.org/10.1056/NEJM199302253280804
Kratz A, Wood MJ, Siegel AJ, et al. Effects of marathon running on platelet activation markers: direct evidence for in vivo platelet activation. Am J Clin Pathol 2006;125:296-300. DOI: https://doi.org/10.1309/PRF5N7P2XM6E243H
Douglas PS, O’Toole ML, Woolard J. Regional wall motion abnormalities after prolonged exercise in the normal left ventricle. Circulation 1990;82:2108-14. DOI: https://doi.org/10.1161/01.CIR.82.6.2108
Donaldson JA, Wiles JD, Coleman DA, et al. Left ventricular function and cardiac biomarker release-the influence of exercise intensity, duration and mode: a systematic review and meta-analysis. Sports Med 2019;49:1275-89. DOI: https://doi.org/10.1007/s40279-019-01142-5
La Gerche A, Burns AT, Mooney DJ, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 2012;33:998-1006. DOI: https://doi.org/10.1093/eurheartj/ehr397
Segreti A, Celeski M, Monticelli LM, et al. Mitral and tricuspid valve disease in athletes. J Clin Med 2023;12:3562. DOI: https://doi.org/10.3390/jcm12103562
Herrmann M, Scharhag J, Miclea M, et al. Post-race kinetics of cardiac troponin T and I and N-terminal pro-brain natriuretic peptide in marathon runners. Clin Chem 2003;49:831-4. DOI: https://doi.org/10.1373/49.5.831
Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021;42:1289-67. DOI: https://doi.org/10.1093/eurheartj/ehaa909
Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Eur Heart J 2012;33:2551-67. DOI: https://doi.org/10.1093/eurheartj/ehs184
Wu AHB, Christenson RH, Greene DN, et al. Clinical laboratory practice recommendations for the use of cardiac troponin in acute coronary syndrome: expert opinion from the Academy of the American Association for Clinical Chemistry and the task force on clinical applications of cardiac bio-markers of the International Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem 2018;64:645-55. DOI: https://doi.org/10.1373/clinchem.2017.277186
Domienik-Karłowicz J, Kupczyńska K, Michalski B, et al. Fourth universal definition of myocardial infarction. Selected messages from the European Society of Cardiology document and lessons learned from the new guidelines on ST-segment elevation myocardial infarction and non-ST-segment elevation-acute coronary syndrome. Cardiol J 2021;28:195-201. DOI: https://doi.org/10.5603/CJ.a2021.0036
Dedic A, Lubbers MM, Schaap J, et al. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol 2016;67:16-26. DOI: https://doi.org/10.1016/j.jacc.2015.10.045
Siegel AJ, Sholar M, Yang J, et al. Elevated serum cardiac markers in asymptomatic marathon runners after competition: is the myocardium stunned?. Cardiology 1997;88:487-91. DOI: https://doi.org/10.1159/000177396
Samaha E, Avila A, Helwani MA, et al. High-sensitivity cardiac troponin after cardiac stress Test: a systematic review and meta-analysis. J Am Heart Assoc 2019;8:e008626. DOI: https://doi.org/10.1161/JAHA.118.008626
Beatty AL, Ku IA, Christenson RH, et al. High-sensitivity cardiac troponin T levels and secondary events in outpatients with coronary heart disease from the Heart and Soul Study. JAMA Intern Med 2013;173:763-9. DOI: https://doi.org/10.1001/jamainternmed.2013.116
Park KC, Gaze DC, Collinson PO, et al. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res 2017;113:1708-18. DOI: https://doi.org/10.1093/cvr/cvx183
Van der Linden N, Klinkenberg LJJ, Bekers O, et al. Prognostic value of basal high-sensitive cardiac troponin levels on mortality in the general population: a meta-analysis. Medicine (Baltimore) 2016;95:e5703. DOI: https://doi.org/10.1097/MD.0000000000005703
Omland T, Aakre KM. Cardiac troponin increase after endurance exercise. Circulation 2019;140:815-18. DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.042131
Titus J, Wu AHB, Biswal S, et al. Development and preliminary validation of infrared spectroscopic device for transdermal assessment of elevated cardiac troponin. Commun Med (Lond) 2022;2:42. DOI: https://doi.org/10.1038/s43856-022-00104-9
Streng AS, de Boer D, van Doorn WP, et al. Identification and characterization of cardiac troponin t fragments in serum of patients suffering from acute myocardial infarction. Clin Chem 2017;63:563-72. DOI: https://doi.org/10.1373/clinchem.2016.261511
Damen SAJ, Vroemen WHM, Brouwer MA, et al. Multi-site coronary vein sampling study on cardiac troponin T degradation in non-ST-segment-elevation myocardial infarction: toward a more specific cardiac troponin T assay. J Am Heart Assoc 2019;8:e012602. DOI: https://doi.org/10.1161/JAHA.119.012602
Ribeiro MC, Rivera-Arbeláez JM, Cofiño-Fabres C, et al. A new versatile platform for assessment of improved cardiac performance in human-engineered heart tissues. J Pers Med 2022;12:214. DOI: https://doi.org/10.3390/jpm12020214

How to Cite

Celeski, Mihail, Andrea Segreti, Mariagrazia Piscione, Luigi Maria Monticelli, Giuseppe Di Gioia, Chiara Fossati, Gian Paolo Ussia, Fabio Pigozzi, and Francesco Grigioni. 2024. “The Current Paradigm of Cardiac Troponin Increase Among Athletes”. Monaldi Archives for Chest Disease, April. https://doi.org/10.4081/monaldi.2024.2878.