Oxygen-induced hypercapnia: physiological mechanisms and clinical implications

Submitted: August 8, 2022
Accepted: October 24, 2022
Published: November 18, 2022
Abstract Views: 9966
PDF: 2921
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Oxygen is probably the most commonly prescribed drug in the emergency setting and is a life-saving modality as well. However, like any other drug, oxygen therapy may also lead to various adverse effects. Patients with chronic obstructive pulmonary disease (COPD) may develop hypercapnia during supplemental oxygen therapy, particularly if uncontrolled. The risk of hypercapnia is not restricted to COPD only; it has also been reported in patients with morbid obesity, asthma, cystic fibrosis, chest wall skeletal deformities, bronchiectasis, chest wall deformities, or neuromuscular disorders. However, the risk of hypercapnia should not be a deterrent to oxygen therapy in hypoxemic patients with chronic lung diseases, as hypoxemia may lead to life-threatening cardiovascular complications. Various mechanisms leading to the development of oxygen-induced hypercapnia are the abolition of ‘hypoxic drive’, loss of hypoxic vasoconstriction and absorption atelectasis leading to an increase in dead-space ventilation and Haldane effect. The international guideline recommends a target oxygen saturation of 88% to 92% in patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD) and other chronic lung diseases at risk of hypercapnia.  Oxygen should be administered only when oxygen saturation is below 88%. We searched PubMed, EMBASE, and the CINAHL from inception to June 2022. We used the following search terms: “Hypercapnia”, “Oxygen therapy in COPD”, “Oxygen-associated hypercapnia”, “oxygen therapy”, and “Hypoxic drive”. All types of study are selected. This review will focus on the physiological mechanisms of oxygen-induced hypercapnia and its clinical implications.



PlumX Metrics


Download data is not yet available.


Kane B, Decalmer S, O'Driscoll BR. Emergency oxygen therapy: from guideline to implementation. Breathe 2013;9:246-53. DOI: https://doi.org/10.1183/20734735.025212
O’Driscoll BR, Howard LS, Davison AG; British Thoracic Society. BTS guideline for emergency oxygen use in adult patients. Thorax 2008;63:1-68. DOI: https://doi.org/10.1136/thx.2008.102947
British Thoracic Society Scottish Intercollegiate Guidelines Network. British Guideline on the management of asthma. Thorax 2008;63:1-121. DOI: https://doi.org/10.1136/thx.2008.097741
Roberts CM, Stone RA, Buckingham RJ, et al. Acidosis, non-invasive ventilation and mortality in hospitalised COPD exacerbations. Thorax 2011;66:43-8. DOI: https://doi.org/10.1136/thx.2010.153114
Murphy R, Driscoll P, O’Driscoll R. Emergency oxygen therapy for the COPD patient. Emerg Med J 2001;18:333–9. DOI: https://doi.org/10.1136/emj.18.5.333
Denniston AK, O’Brien C, Stableforth D. The use of oxygen in acute exacerbations of chronic obstructive pulmonary disease: A prospective audit of pre-hospital and hospital emergency management. Clin Med (Lond) 2002;2:449–51. DOI: https://doi.org/10.7861/clinmedicine.2-5-449
Joosten EA. The effects of oxygen therapy in patients presenting to an emergency department with exacerbation of chronic obstructive pulmonary disease. Med J Aust 2007;5:235–8. DOI: https://doi.org/10.5694/j.1326-5377.2007.tb00879.x
Robinson TD, Freiberg DB, Regnis JA, Young IH. The role of hypoventilation and ventilation-perfusion redistribution in oxygen induced hypercapnia during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000;161:1524-29. DOI: https://doi.org/10.1164/ajrccm.161.5.9904119
Plant PK, Owen JL, Elliott MW. One year period prevalence study of respiratory acidosis in acute exacerbations of COPD: Implications for the provision of non-invasive ventilation and oxygen administration. Thorax 2000;55:550–4. DOI: https://doi.org/10.1136/thorax.55.7.550
Wijesinghe M, Perrin K, Healy B et al. Pre-hospital oxygen therapy in acute exacerbations of chronic obstructive pulmonary disease. Intern Med J 2011;41:618–22. DOI: https://doi.org/10.1111/j.1445-5994.2010.02207.x
Brill SE, Wedzicha JA. Oxygen therapy in acute exacerbations of chronic obstructive pulmonary disease. Int J COPD 2014:9:1241–52. DOI: https://doi.org/10.2147/COPD.S41476
Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease, 2022 Report. Available from: https://goldcopd.org/wp-content/uploads/2021/12/GOLD-REPORT-2022-v1.1-22Nov2021_WMV.pdf
Beasley R, Chien J, Douglas J, et al. Thoracic Society of Australia and New Zealand oxygen guidelines for acute oxygen use in adults: ‘Swimming between the flags’. Respirology 2015;20:1182–91. DOI: https://doi.org/10.1111/resp.12620
Barach AL. Recent advances in inhalation therapy in the treatment of cardiac and respiratory disease. NT State J Med 1937;37:1095-110.
Barach AL. Physiological methods in the diagnosis and treatment of asthma and emphysema. Ann Intern Med 1938;12:454-81. DOI: https://doi.org/10.7326/0003-4819-12-4-454
Comroe JH, Bahnson ER, Coates EO. Mental changes occurring in chronically anoxemic patients during oxygen therapy. J Am Med Assoc 1950;143:1044-8. DOI: https://doi.org/10.1001/jama.1950.02910470004002
Donald K, Simpson T, McMichael J, Lennox B. Neurological effects of oxygen. Lancet 1949;254:1056-57. DOI: https://doi.org/10.1016/S0140-6736(49)91632-3
Davies CE, Mackinnon J. Neurological effects of oxygen in chronic cor pulmonale. Lancet 1949;2:883-5. DOI: https://doi.org/10.1016/S0140-6736(49)91459-2
Westlake EK, Simpson T, Kaye M. Carbon dioxide narcosis in emphysema. Q J Med 1955;24:155-73.
Campbell EJ. Respiratory failure: the relation between oxygen concentrations of inspired air and arterial blood. Lancet 1960;2:10-1. DOI: https://doi.org/10.1016/S0140-6736(60)92659-3
Campbell EJ. A method of controlled oxygen administration which reduces the risk of carbon-dioxide retention. Lancet 1960;2:12-4. DOI: https://doi.org/10.1016/S0140-6736(60)92660-X
Campbell EJM: The J. Burns Amberson Lecture. The management of acute respiratory failure in chronic bronchitis and emphysema. Am Rev Respir Dis 1967;96:626–39.
Eldridge F, Gherman C. Studies of oxygen administration in respiratory failure. Ann Intern Med 1968;68:569-78. DOI: https://doi.org/10.7326/0003-4819-68-3-569
Massaro DJ, Katz S, Luchsinger PC. Effect of various modes of oxygen administration on the arterial gas values in patients with respiratory acidosis. BMJ 1962;2:627–9. DOI: https://doi.org/10.1136/bmj.2.5305.627
Skatrud J, Iber C, McHugh W, Rasmussen H, et al. Determinants of hypoventilation during wakefulness and sleep in diaphragmatic paralysis. Am Rev Respir Dis 1980;121:587-93. DOI: https://doi.org/10.1164/arrd.1980.121.3.587
Gay PC, Edmonds LC. Severe hypercapnia after low-flow oxygen therapy in patients with neuromuscular disease and diaphragmatic dysfunction. Mayo Clin Proc 1995;70:327. DOI: https://doi.org/10.4065/70.4.327
Chiou M, Bach JR, Saporito R, Albert O. Quantitation of oxygen-induced hypercapnia in respiratory pump failure. Revista Portuguesa de Pneumologia (English Edition) 2016;22:262–5. DOI: https://doi.org/10.1016/j.rppnen.2016.03.005
Wijesinghe M, Williams M, Perrin K, et al. The effect of supplemental oxygen on hypercapnia in subjects with obesity-associated hypoventilation: a randomized, crossover, clinical study. Chest 2011;139:1018-24. DOI: https://doi.org/10.1378/chest.10-1280
Said SI, Banerjee CM. Venous admixture to the pulmonary circulation in human subjects breathing 100 per cent oxygen. J Clin Invest 1963;42:507-15. DOI: https://doi.org/10.1172/JCI104739
Hollier CA, Harmer AR, Maxwell LJ, et al. Moderate concentrations of supplemental oxygen worsen hypercapnia in obesity hypoventilation syndrome: a randomised crossover study. Thorax 2014;69:346-53. DOI: https://doi.org/10.1136/thoraxjnl-2013-204389
Ting JYS. Hypercapnia and oxygen therapy in older asthmatic patients. Eur J Emerg Med 2004;11:355–57. DOI: https://doi.org/10.1097/00063110-200412000-00012
Field GB. The effects of posture, oxygen, isoproterenol and atropine on ventilation perfusion relationships in the lung in asthma. Clin Sci 1967;32:279-88.
Chien JW, Ciufo R, Novak R, et al. Uncontrolled oxygen administration and respiratory failure in acute asthma. Chest 2000;117:728–33. DOI: https://doi.org/10.1378/chest.117.3.728
Rudolf M, Riordan JF, Grant BJ, Maberly DJ, Saunders KB. Arterial blood gas tensions in acute severe asthma. Eur J Clin Invest 1980;10:55–62. DOI: https://doi.org/10.1111/j.1365-2362.1980.tb00010.x
Perrin K, Wijesinghe M, Healy B, et al. Randomised controlled trial of high concentration versus titrated oxygen therapy in severe exacerbations of asthma. Thorax 2011;66:937–41. DOI: https://doi.org/10.1136/thx.2010.155259
Rodrigo GJ, Rodriquez Verde M, et al. Effects of short-term 28% and 100% oxygen on PaCO2 and peak expiratory flow rate in acute asthma: a randomized trial. Chest 2003;124:1312-7. DOI: https://doi.org/10.1378/chest.124.4.1312
Wijesinghe M, Perrin K, Healy B, et al. Randomized controlled trial of high concentration oxygen in suspected community acquired pneumonia. J R Soc Med 2011;105:208–16. DOI: https://doi.org/10.1258/jrsm.2012.110084
Prime FJ, Westlake EK. The respiratory response to CO2 in emphysema. Clin Sei 1954;13:321-32.
Howard LS. Oxygen therapy. Clin Med 2009;9:156–9. DOI: https://doi.org/10.7861/clinmedicine.9-2-156
Becker HF, Polo O, McNamara SG, et al. Effect of different levels of hyperoxia on breathing in healthy subjects. J Appl Physiol 1996;81:1683-90. DOI: https://doi.org/10.1152/jappl.1996.81.4.1683
Fahey PJ, Hyde RW. “Won’t breathe” vs “can’t breathe”. Detection of depressed ventilatory drive in patients with obstructive pulmonary disease. Chest 1983;84:19-25. DOI: https://doi.org/10.1378/chest.84.1.19
Goldring RM, Turino GM, Heinemann HD. Respiratory-renal adjustments in chronic hypercapnia in man. Am J Med 1971;51:772-84. DOI: https://doi.org/10.1016/0002-9343(71)90305-6
New A. Oxygen: kill or cure? Prehospital hyperoxia in the COPD Patient. Emerg Med J 2006;23:144–46. DOI: https://doi.org/10.1136/emj.2005.027458
Rudolf M, Banks RA, Semple SJ. Hypercapnia during oxygen therapy in acute exacerbations of chronic respiratory failure. Hypothesis revisited. Lancet 1977;2:483-6. DOI: https://doi.org/10.1016/S0140-6736(77)91606-3
Aubier M, Murciano D, Fournier M, et al. Central respiratory drive in acute respiratory failure of patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1980;122:191-9.
Aubier M, Murciano D, Milic-Emili J, et al. Effects of the administration of 02 on ventilation and blood gases in patients with chronic obstructive pulmonary disease during acute respiratory failure. Am Rev Respir Dis 1980;122:747-54. DOI: https://doi.org/10.1164/arrd.1980.122.5.747
Rialp G, Raurich JM, Llompart-Pou JA, Ayestarán I. Role of respiratory drive in hyperoxia-induced hypercapnia in ready-to-wean subjects with COPD. Respir Care 2015;60:328-34. DOI: https://doi.org/10.4187/respcare.03270
Sassoon CS, Hassell KT, Mahutte CK. Hyperoxic-induced hypercapnia in stable chronic obstructive pulmonary disease. Am Rev Respir Dis 1987;135:907-11. DOI: https://doi.org/10.1164/arrd.1987.135.4.907
Hanson CW 3rd, Marshall BE, Frasch HF, Marshall C. Causes of hypercarbia with oxygen therapy in patients with chronic obstructive pulmonary disease. Crit Care Med 1996;24:23-8. DOI: https://doi.org/10.1097/00003246-199601000-00007
Gomersall CD, Joynt GM, Freebairn RC, et al. Oxygen therapy for hypercapnic patients with chronic obstructive pulmonary disease and acute respiratory failure: a randomized, controlled pilot study. Crit Care Med 2002;30:113-6. DOI: https://doi.org/10.1097/00003246-200201000-00018
Costello R, Deegan P, Fitzpatrick M, et al. Reversible hypercapnia in chronic obstructive pulmonary disease: A distinct pattern of respiratory failure with a favorable prognosis. Am J Med 1997;102:239-44. DOI: https://doi.org/10.1016/S0002-9343(97)00017-X
McNally E, Fitzpatrick M, Bourke S, et al. Reversible hypercapnia in acute exacerbations of chronic obstructive pulmonary disease (COPD). Eur Respir J 1993;6:1353–56. DOI: https://doi.org/10.1183/09031936.93.06091353
Tardif C, Bonmarchand G, Gibon JF, et al. Respiratory response to CO2 in patients with chronic obstructive pulmonary disease in acute respiratory failure. Eur Respir J 1993;6:619-24. DOI: https://doi.org/10.1183/09031936.93.06050619
Lee KD, Bishop JM. The reflex hypoxic respiratory drive in patients with chronic bronchitis. Clin Sci Mol Med 1974;46:347-56. DOI: https://doi.org/10.1042/cs0460347
Dejours P. Chemoreflexes in breathing. Physiol Rev 1962;42:335-58. DOI: https://doi.org/10.1152/physrev.1962.42.3.335
Moloney ED, Kiely JL, McNicholas WT. Controlled oxygen therapy and carbon dioxide retention during exacerbations of chronic obstructive pulmonary disease. Lancet 2001;357:526-28. DOI: https://doi.org/10.1016/S0140-6736(00)04049-6
Dantzker DR, Wagner PD, West JB. Instability of lung units with low VA/Q ratios during O2 breathing. J Appl Physiol 1975;38:886-95. DOI: https://doi.org/10.1152/jappl.1975.38.5.886
Downs JB. Has oxygen administration delayed appropriate respiratory care? Fallacies regarding oxygen therapy. Respir Care 2003;48:611–20.
Van Den Elshout FJ, van Herwaarden CL, Folgering HT. Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax 1991;46:28-32. DOI: https://doi.org/10.1136/thx.46.1.28
Feller-Kopman D, Schwartzstein R. The role of hypoventilation and ventilation-perfusion redistribution in oxygen-induced hypercapnia during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163:1755. DOI: https://doi.org/10.1164/ajrccm.163.7.16372a
Christiansen J, Douglas CG, Haldane JS. The absorption and dissociation of carbon dioxide by human blood. J Physiol 1914;48:244-71. DOI: https://doi.org/10.1113/jphysiol.1914.sp001659
Stradling JR. Hypercapnia during oxygen therapy in airways obstruction: a reappraisal. Thorax 1986;41:897-2. DOI: https://doi.org/10.1136/thx.41.12.897
Lenfant C. Arterial-alveolar difference in Peo, during air and oxygen breathing. J Appl PhysioI 1966;21:1356-62. DOI: https://doi.org/10.1152/jappl.1966.21.4.1356
Dick CR, Liu Z, Sassoon CS, et al. O2-induced change in ventilation and ventilatory drive in COPD. Am J Respir Crit Care Med 1997;155:609. DOI: https://doi.org/10.1164/ajrccm.155.2.9032202
Feller-Kopman DJ, Schwartzstein RM. Mechanisms, causes, and effects of hypercapnia. Waltham: UptoDate; 2020.
Johnson JE, Peacock MD, Hayes JA, et al. Forced expiratory flow is reduced by 100% oxygen in patients with chronic obstructive pulmonary disease. South Med J 1995;88:443-9. DOI: https://doi.org/10.1097/00007611-199504000-00012
Abdo WF, Heunks LM. Oxygen-induced hypercapnia in COPD: myths and facts. Crit Care 2012;16:323. DOI: https://doi.org/10.1186/cc11475
Agarwal R, Baid R. Asterixis. J Postgrad Med 2016;62:115-7. DOI: https://doi.org/10.4103/0022-3859.180572
Pilcher J, Perrin K, Beasley R. The effect of high concentration oxygen therapy on PaCO2 in acute and chronic respiratory disorders. Transl Respir Med 2013;1:8. DOI: https://doi.org/10.1186/2213-0802-1-8
Young IH, Bye PTP. Gas exchange in disease: asthma, chronic obstructive pulmonary disease, cystic fibrosis, and interstitial lung disease Compr Physiol 2011;1:663-97. DOI: https://doi.org/10.1002/cphy.c090012
Medical Research Council Working Party. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Lancet 1981;1 681-6. DOI: https://doi.org/10.1016/S0140-6736(81)91970-X
Bone RC, Pierce AK, Johnson RL. Controlled oxygen administration in acute respiratory failure in chronic obstructive pulmonary disease. A reappraisal. Am J Med 1978;65:896–2. DOI: https://doi.org/10.1016/0002-9343(78)90740-4
Austin MA, Wills KE, Blizzard L, et al. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ 2010;341:c5462. DOI: https://doi.org/10.1136/bmj.c5462
Pilcher J, Weatherall M, Perrin K, Beasley R. Oxygen therapy in acute exacerbations of chronic obstructive pulmonary disease. Expert Rev Respir Med 2015;9:287-93. DOI: https://doi.org/10.1586/17476348.2015.1016503
Echevarria C, Steer J, Wason J, Bourke S. Oxygen therapy and inpatient mortality in COPD exacerbation. Emerg Med J 2021;38:170-7. DOI: https://doi.org/10.1136/emermed-2019-209257
Deshpande S, Datey N, Liacos N, et al. Acute oxygen use in hospitalised patients with chronic obstructive disease is guideline discordant. Intern Med J 2021;51:780-3. DOI: https://doi.org/10.1111/imj.15318
Anderson J, Hoang T, Hay K, Tay TP. Evaluation of inpatient oxygen therapy in hypercapnic chronic obstructive pulmonary disease. Intern Med J 2021;51:654–9. DOI: https://doi.org/10.1111/imj.15070
Hutchison DC, Flenley DC, Donald KW. Controlled Oxygen therapy in respiratory failure. Br Med J 1964;2:1159–66. DOI: https://doi.org/10.1136/bmj.2.5418.1159
Gozal D. Nocturnal ventilatory support in patients with cystic fibrosis: comparison with supplemental oxygen. Eur Respir J 1997;10:1999–203. DOI: https://doi.org/10.1183/09031936.97.10091999
Pauwels RA, Buist AS, Calverley PM, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001;163:1256-76. DOI: https://doi.org/10.1164/ajrccm.163.5.2101039
Yang IA, Brown JL, George J, et al. COPD-X Australian and New Zealand guidelines for the diagnosis and management of chronic obstructive pulmonary disease: 2017 update. Med J Aust 2017;207:436-42. DOI: https://doi.org/10.5694/mja17.00686
National Collaborating Centre for Chronic Conditions. Chronic obstructive pulmonary disease. London: National Institute for Clinical Excellence; 2004.
British Thoracic Society. Guidelines for the management of acute exacerbations of COPD. Thorax 1997;52:S16–21. DOI: https://doi.org/10.1136/thx.52.2008.S16
Malli F, Boutlas S, Lioufas N, Gourgoulianis KI. Automated oxygen delivery in hospitalized patients with acute respiratory failure: A pilot study. Can Respir J 2019;2019:4901049. DOI: https://doi.org/10.1155/2019/4901049
Agusti AG, Carrera M, Barbe F, et al. Oxygen therapy during exacerbations of chronic obstructive pulmonary disease. Eur Respir J 1999;14:934–9. DOI: https://doi.org/10.1034/j.1399-3003.1999.14d34.x
Cohn JE, Carroll DG, Riley RL. Respiratory acidosis in patients with emphysema. Amer J Med 1954;17 447-63. DOI: https://doi.org/10.1016/0002-9343(54)90120-5
Harbord RP, Woolmer R. Symposium on pulmonary ventilation. Under the auspices of the British Journal of Anaesthesia. Sherratt, Altrincham;1958.
Campbell EJM. Respiratory Failure. Br Med J 1965;1:1451–60. DOI: https://doi.org/10.1136/bmj.1.5448.1451
Urwin L, Murphy R, Robertson C, Pollok A. A case of extreme hypercapnia: implications for the prehospital and accident and emergency department management of acutely dyspnoeic patients. Emerg Med J 2004;21:119-20. DOI: https://doi.org/10.1136/emj.2003.005009
Ringbaek TJ, Terkelsen J, Lange P. Outcomes of acute exacerbations in COPD in relation to pre-hospital oxygen therapy. Eur Clin Respir J 2015;2:27283. DOI: https://doi.org/10.3402/ecrj.v2.27283
Doğan NÖ, Varol Y, Köktürk N, et al. 2021 Guideline for the Management of COPD Exacerbations: Emergency Medicine Association of Turkey (EMAT) / Turkish Thoracic Society (TTS) Clinical Practice Guideline Task Force. Turk J Emerg Med 2021;21:137-76.
Tobin MJ, Jubran A. Oxygen takes the breath away: Old sting, new setting. Mayo Clin Proc 1995;70:403-4. DOI: https://doi.org/10.4065/70.4.403
Lal S. Blood gases in respiratory failure. State on admission to hospital and management. Lancet 1965;1:339-41. DOI: https://doi.org/10.1016/S0140-6736(65)91775-7
McNicol MW, Campbell EJ. Severity of respiratory failure. Arterial blood-gases in untreated patients. Lancet 1965;1:336-8. DOI: https://doi.org/10.1016/S0140-6736(65)91774-5
Chu DK, Kim LH, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 2018;391:1693–705. DOI: https://doi.org/10.1016/S0140-6736(18)30479-3
Allardet-Servent J, Sicard G, Metz V, Chiche L. Benefits and risks of oxygen therapy during acute medical illness: Just a matter of dose! Rev Med Intern 2019;40:670-6. DOI: https://doi.org/10.1016/j.revmed.2019.04.003
Bardsley G, Pilcher J, McKinstry S, et al. Oxygen versus air-driven nebulisers for exacerbations of chronic obstructive pulmonary disease: a randomised controlled trial. BMC Pulm Med 2018;18:157. DOI: https://doi.org/10.1186/s12890-018-0720-7
Gooptu B, Ward L, Ansari SO, et al. Oxygen alert cards and controlled oxygen: preventing emergency admissions at risk of hypercapnic acidosis receiving high inspired oxygen concentrations in ambulances and A&E departments. Emerg Med J 2006;23:636-38. DOI: https://doi.org/10.1136/emj.2005.029991
Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017;50:1602426. DOI: https://doi.org/10.1183/13993003.02426-2016
Osadnik CR, Tee VS, Carson-Chahhoud KV, et al. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017;7:CD004104. DOI: https://doi.org/10.1002/14651858.CD004104.pub4
Ergan B, Oczkowski S, Rochwerg B, et al. European Respiratory Society guidelines on long-term home non-invasive ventilation for management of COPD. Eur Respir J 2019;54:1901003. DOI: https://doi.org/10.1183/13993003.01003-2019
Crimi C, Pierucci P, Carlucci A, et al. Long-term ventilation in neuromuscular patients: Review of concerns, beliefs, and ethical dilemmas. Respiration 2019;97:185-96. DOI: https://doi.org/10.1159/000495941
Lodeserto FJ, Lettich TM, Rezaie SR. High-flow nasal cannula: Mechanisms of action and adult and pediatric indications. Cureus. 2018;10:e3639. DOI: https://doi.org/10.7759/cureus.3639
Li XY, Tang X, Wang R, et al. High-flow nasal cannula for chronic obstructive pulmonary disease with acute compensated hypercapnic respiratory failure: A randomized, controlled trial. Int J Chron Obstruct Pulmon Dis 2020;15:3051-61. DOI: https://doi.org/10.2147/COPD.S283020
Doğan NÖ, Varol Y, Köktürk N, et al. 2021 Guideline for the management of COPD exacerbations: Emergency Medicine Association of Turkey (EMAT) / Turkish Thoracic Society (TTS) Clinical Practice Guideline Task Force. Turk J Emerg Med 2021;21:137-76. DOI: https://doi.org/10.4103/2452-2473.329630
Refsum HE. Relationship between state of consciousness and arterial hypoxaemia and hypercapnia in patients with pulmonary insufficiency, breathing air. Clin Sci 1963;25:361-7.
Kane B, Turkington PM, Howard LS, et al. Rebound hypoxaemia after administration of oxygen in an acute exacerbation of chronic obstructive pulmonary disease. BMJ 2011;342:d1557. DOI: https://doi.org/10.1136/bmj.d1557

How to Cite

Sarkar, Malay, Irappa Madabhavi, and Nagaveni Kadakol. 2022. “Oxygen-Induced Hypercapnia: Physiological Mechanisms and Clinical Implications”. Monaldi Archives for Chest Disease 93 (3). https://doi.org/10.4081/monaldi.2022.2399.