Early diagnosis of cardiomyopathies by cardiac magnetic resonance. Overview of the main criteria

Submitted: February 28, 2022
Accepted: March 15, 2022
Published: April 11, 2022
Abstract Views: 1152
PDF: 452
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Cardiomyopathies (CMPs) are diseases of the heart muscle. They include a variety of myocardial disorders that manifest with various structural and functional phenotypes and are frequently genetic. Myocardial disease caused by known cardiovascular causes (such as hypertension, ischemic heart disease, or valvular disease) should be distinguished from CMPs for classification and management purposes. Identification of various CMP phenotypes relies primarily upon echocardiographic evaluation. In selected cases, cardiac magnetic resonance imaging (CMR) or computed tomography may be useful to identify and localize fatty infiltration, inflammation, scar/fibrosis, focal hypertrophy, and better visualize the left ventricular apex and right ventricle.  CMR imaging has emerged as a comprehensive tool for the diagnosis and follow-up of patients with CMPs. The accuracy and reproducibility in evaluating cardiac structures, the unique ability of non-invasive tissue characterization and the lack of ionizing radiation, make CMR very attractive as a potential “all-in-one technique”. Indeed, it provides valuable data to confirm or establish the diagnosis, screen subclinical cases, identify aetiology, establish the prognosis. Additionally, it provides information for setting a risk stratification (based on evaluation of proved independent prognostic factors as ejection fraction, end-systolic-volume, myocardial fibrosis) and follow-up. Last, it helps to monitor the response to the therapy. In this review, the pivotal role of CMR in the comprehensive evaluation of patients with CMP is discussed, highlighting the key features guiding differential diagnosis and the assessment of prognosis.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Arbustini E, Narula N, Tavazzi L, et al. The MOGE(S) classification of cardiomyopathy for clinicians. J Am Coll Cardiol 2014;64:304-18. DOI: https://doi.org/10.1016/j.jacc.2014.05.027
Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006;113:1807-16. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.174287
Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 1996;93:841-2. DOI: https://doi.org/10.1161/01.CIR.93.5.841
Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2008;29:270-6. DOI: https://doi.org/10.1093/eurheartj/ehm342
McKenna WJ, Maron BJ, Thiene G. Classification, epidemiology, and global burden of cardiomyopathies. Circ Res 2017;121:722-30. DOI: https://doi.org/10.1161/CIRCRESAHA.117.309711
Kramer CM, Barkhausen J, Bucciarelli-Ducci C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 2020;22:17. DOI: https://doi.org/10.1186/s12968-020-00607-1
Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 2015;17:72. DOI: https://doi.org/10.1186/s12968-015-0174-5
Swoboda PP, McDiarmid AK, Page SP, et al. Role of T1 mapping in Inherited cardiomyopathies. Eur Cardiol 2016;11:96-101. DOI: https://doi.org/10.15420/ecr/2016:28:2
Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017;19:75. DOI: https://doi.org/10.1186/s12968-017-0389-8
Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J 2010;31:806-14. DOI: https://doi.org/10.1093/eurheartj/ehq025
Cardim N, Galderisi M, Edvardsen T, et al. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imaging 2015;16:280. DOI: https://doi.org/10.1093/ehjci/jeu291
Brenes JC, Doltra A, Prat S. Cardiac magnetic resonance imaging in the evaluation of patients with hypertrophic cardiomyopathy. Glob Cardiol Sci Pract 2018;2018:22. DOI: https://doi.org/10.21542/gcsp.2018.22
Maron MS, Lesser JR, Maron BJ. Management implications of massive left ventricular hypertrophy in hypertrophic cardiomyopathy significantly underestimated by echocardiography but identified by cardiovascular magnetic resonance. Am J Cardiol 2010;105:1842-3. DOI: https://doi.org/10.1016/j.amjcard.2010.01.367
Weng Z, Yao J, Chan RH, et al. Prognostic value of LGE-CMR in HCM: A meta-analysis. JACC Cardiovasc Imaging 2016;9:1392-402. DOI: https://doi.org/10.1016/j.jcmg.2016.02.031
Hinojar R, Varma N, Child N, et al. T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. Circ Cardiovasc Imaging 2015;8:e003285. DOI: https://doi.org/10.1161/CIRCIMAGING.115.003285
Gulati A, Ismail TF, Jabbour A, et al. Clinical utility and prognostic value of left atrial volume assessment by cardiovascular magnetic resonance in non-ischaemic dilated cardiomyopathy. Eur J Heart Fai. 2013;15:660-70. DOI: https://doi.org/10.1093/eurjhf/hft019
Mewton N, Liu CY, Croisille P, et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Card. 2011;57:891-903. DOI: https://doi.org/10.1016/j.jacc.2010.11.013
McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003;108:54-9. DOI: https://doi.org/10.1161/01.CIR.0000078641.19365.4C
Køber L, Thune JJ, Nielsen JC, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 2016;375:1221-30. DOI: https://doi.org/10.1056/NEJMoa1608029
Gulati A, Jabbour A, Ismail TF, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013;309:896-908. DOI: https://doi.org/10.1001/jama.2013.1363
Acosta J, Fernández-Armenta J, Borràs R, et al. Scar characterization to predict life-threatening arrhythmic events and sudden cardiac death in patients with cardiac resynchronization therapy: The GAUDI-CRT Study. JACC Cardiovasc Imaging 2018;11:561-72. DOI: https://doi.org/10.1016/j.jcmg.2017.04.021
Lagan J, Schmitt M, Miller CA. Clinical applications of multi-parametric CMR in myocarditis and systemic inflammatory diseases. Int J Cardiovasc Imaging 2018;34:35-54. DOI: https://doi.org/10.1007/s10554-017-1063-9
Chan AT, Plodkowski AJ, Pun SC, et al. Prognostic utility of differential tissue characterization of cardiac neoplasm and thrombus via late gadolinium enhancement cardiovascular magnetic resonance among patients with advanced systemic cancer. J Cardiovasc Magn Reson 2017;19:76. DOI: https://doi.org/10.1186/s12968-017-0390-2
Jordan JH, Vasu S, Morgan TM, et al. Anthracycline-associated T1 mapping characteristics are elevated independent of the presence of cardiovascular comorbidities in cancer survivors. Circ Cardiovasc Imaging 2016;9:e004325. DOI: https://doi.org/10.1161/CIRCIMAGING.115.004325
Fontana M, Chung R, Hawkins PN, Moon JC. Cardiovascular magnetic resonance for amyloidosis. Heart Fail Rev 2015;20:133-44. DOI: https://doi.org/10.1007/s10741-014-9470-7
Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015;132:1570-9. DOI: https://doi.org/10.1161/CIRCULATIONAHA.115.016567
Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015;36:244-51. DOI: https://doi.org/10.1093/eurheartj/ehu444
Dungu JN, Valencia O, Pinney JH, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging 2014;7:133-42. DOI: https://doi.org/10.1016/j.jcmg.2013.08.015
Fontana M, Banypersad SM, Treibel TA, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology 2015;277:388–97. DOI: https://doi.org/10.1148/radiol.2015141744
Ridouani F, Damy T, Tacher V, et al. Myocardial native T2 measurement to differentiate light-chain and transthyretin cardiac amyloidosis and assess prognosis. J Cardiovasc Magn Resonance 2018;20:58-65. DOI: https://doi.org/10.1186/s12968-018-0478-3
Thompson RB, Chow K, Khan A, et al. T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 2013;6:637-45. DOI: https://doi.org/10.1161/CIRCIMAGING.113.000482
Hughes DA, Elliott PM, Shah J, et al. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: a randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart 2008;94:153-8. DOI: https://doi.org/10.1136/hrt.2006.104026
Patel MR, Cawley PJ, Heitner JF, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009;120:1969-77. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.851352
Murtagh G, Laffin LJ, Beshai JF, et al. Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ Cardiovasc Imaging 2016;9:e003738. DOI: https://doi.org/10.1161/CIRCIMAGING.115.003738
Tadamura E, Yamamuro M, Kubo S, et al. Images in cardiovascular medicine. Multimodality imaging of cardiac sarcoidosis before and after steroid therapy. Circulation 2006;113:e771-3. DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.594200
Modell B, Khan M, Darlison M, et al.Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2008;10:42. DOI: https://doi.org/10.1186/1532-429X-10-42
de Carvalho FP, Azevedo CF. Comprehensive assessment of endomyocardial fibrosis with cardiac MRI: morphology, function, and tissue characterization. Radiographics 2020;40:336-53. DOI: https://doi.org/10.1148/rg.2020190148
Corrado D, Perazzolo Marra M, Zorzi A, et al. Diagnosis of arrhythmogenic cardiomyopathy: The Padua criteria. Int J Cardiol 2020;319:106-14. DOI: https://doi.org/10.1016/j.ijcard.2020.06.005
Masso AH, Uribe C, Willerson JT, et al. Left ventricular noncompaction detected by cardiac magnetic resonance screening: a reexamination of diagnostic criteria. Tex Heart Inst J 2020;47:183-93. DOI: https://doi.org/10.14503/THIJ-19-7157
Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet 2015;386:813-25. DOI: https://doi.org/10.1016/S0140-6736(14)61282-4
Nucifora G, Aquaro GD, Pingitore A, et al. Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Fail 2011;13:170-6. DOI: https://doi.org/10.1093/eurjhf/hfq222
Templin C, Ghadri JR, Diekmann J, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med 2015;373:929-38. DOI: https://doi.org/10.1056/NEJMoa1406761
Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J 2008;155:408-17. DOI: https://doi.org/10.1016/j.ahj.2007.11.008

How to Cite

Sozzi, Fabiola B., Laura Iacuzio, Marta Belmonte, Marco Schiavone, Francesca Bursi, Elisa Gherbesi, Frank Levy, Ciro Canetta, and Stefano Carugo. 2022. “Early Diagnosis of Cardiomyopathies by Cardiac Magnetic Resonance. Overview of the Main Criteria”. Monaldi Archives for Chest Disease 92 (4). https://doi.org/10.4081/monaldi.2022.2151.