Prevalence and characteristics of venous thromboembolism in severe exacerbation of chronic obstructive pulmonary disease in a tertiary care hospital in India

Submitted: December 21, 2020
Accepted: March 7, 2021
Published: March 16, 2021
Abstract Views: 3492
PDF: 795
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) carries a high risk of venous thromboembolism (VTE). Pulmonary embolism (PE) and AECOPD increase the mortality and morbidity risk associated with each other. Racial and ethnic differences in VTE risk have been documented in multiple studies. However, there is a dearth of reliable Indian data on the same. This study was planned to find the prevalence of VTE in the setting of severe AECOPD in a tertiary care hospital in India and to identify the clinical, laboratory and radiological characteristics of VTE in severe AECOPD. A total of 156 consecutive patients admitted with severe AECOPD and meeting the specified inclusion and exclusion criteria were recruited. Thorough workup of all patients was done including ABG, serum D dimer, ECG, compression ultrasound of lower limbs and 2-D echocardiography. Patients with high pre-test probability score, or intermediate pre-test probability score at presentation with serum D dimer above the age adjusted cut-off underwent computerised tomography pulmonary angiography (CTPA).  Results were analysed using SPSS version 23.  Sixteen (10.3%) patients had VTE, 15 (93.75%) of them being cases of isolated PE. Female gender, higher cumulative past exposure to corticosteroid, higher alveolar-arterial gradient, right ventricular dysfunction, and higher mean pulmonary artery pressure were associated with increased risk for VTE. The prevalence of VTE in AECOPD in this study among an Indian population is higher than among other Asians, but lower than among the Blacks, the Caucasians and the Middle-East ethnicities. Since a vast majority of VTE presents as PE without DVT in the setting of AECOPD, the absence of deep vein thrombosis of lower limbs does not rule PE in the setting.



PlumX Metrics


Download data is not yet available.


Shapira-Rootman M, Beckerman M, Soimu U, et al. The prevalence of pulmonary embolism among patients suffering
from acute exacerbations of chronic obstructive pulmonary disease. Emerg Radiol 2015;22:257–60. DOI:
Aleva FE, Voets LWLM, Simons SO, et al. Prevalence and localization of pulmonary embolism in unexplained acute
exacerbations of COPD: a systematic review and meta-analysis. Chest 2017;151:544–54. DOI:
Pineda LA, Hathwar VS, Grant BJ. Clinical suspicion of fatal pulmonary embolism. Chest 2001;120:791–5. DOI:
Sidney S, Sorel M, Quesenberry CP, et al. COPD and incident cardiovascular disease hospitalizations and mortality: Kaiser Permanente Medical Care Program. Chest 2005;128:2068–75. DOI:
Saghazadeh A, Rezaei N. Inflammation as a cause of venous thromboembolism. Crit Rev Oncol Hematol 2016;99:272–85. DOI:
Hurst JR, Perera WR, Wilkinson TMA, et al. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006;173:71–8. DOI:
Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 1999;353:1386–9. DOI:
Lesser B. The diagnosis of acute pulmonary embolism in patients with chronic obstructive pulmonary disease. Chest 1992:17–22. DOI:
Tillie-Leblond I, Marquette C-H, Perez T, et al. Pulmonary embolism in patients with unexplained exacerbation of chronic obstructive pulmonary disease: prevalence and risk factors. Ann Intern Med 2006;144:390–6. DOI:
White RH, Keenan CR. Effects of race and ethnicity on the incidence of venous thromboembolism. Thromb Res 2009;123:S11-17. DOI:
Tran H. The risk of venous thromboembolism is lower in multiple Asian ethnic groups. Circulation 2018;137:AMP 18. DOI:
Dutt TS, Udwadia ZF. Prevalence of venous thromboembolism in acute exacerbations of chronic obstructive pulmonary disease: an Indian perspective. Indian J Chest Dis Allied Sci 2011;53:207–10.
Global Initiative for Obstructive Lung Disease. Accessed 8 Jan 2019. Available from:
Raja AS, Greenberg JO, Qaseem A, et al. Evaluation of patients with suspected acute pulmonary embolism: best practice advice from the Clinical Guidelines Committee of the American College of Physicians. Ann Intern Med 2015;163:701. DOI:
Kahn SR, Lim W, Dunn AS, et al. Prevention of VTE in nonsurgical patients. Chest 2012;141:e195S-e226S. DOI:
Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST Guideline and expert panel report. Chest 2016;149:315–52. DOI:
Bertoletti L, Quenet S, Laporte S, et al. Pulmonary embolism and 3-month outcomes in 4036 patients with venous thromboembolism and chronic obstructive pulmonary disease: data from the RIETE registry. Respir Res 2013;14:75. DOI:
Majoor CJ, Kamphuisen PW, Zwinderman AH, et al. Risk of deep vein thrombosis and pulmonary embolism in asthma. Eur Respir J 2013;42:655–61. DOI:
Bizien N, Noel-Savina E, Tromeur C, et al. Age is a major risk factor of venous thromboembolism (VTE). Eur Respir J 2011;38:3936.
Gregson J, Kaptoge S, Bolton T, et al. Cardiovascular risk factors associated with venous thromboembolism. JAMA Cardiol 2019;4:163. DOI:
Martinez C, Cohen AT, Bamber L, et al. Epidemiology of first and recurrent venous thromboembolism: a population-based cohort study in patients without active cancer. Thromb Haemost 2014;112:255–63. DOI:
Roach REJ, Cannegieter SC, Lijfering WM. Differential risks in men and women for first and recurrent venous thrombosis: the role of genes and environment. J Thromb Haemost 2014;12:1593–600. DOI:
Kwon YS, Choi W-I, Lee CW, et al. Sex difference of venous thromboembolism risk in chronic obstructive pulmonary disease and interstitial lung disease. Clin Exp Thromb Hemost 2017;3:24–30. DOI:
Sørheim I-C, Johannessen A, Gulsvik A, et al. Gender differences in COPD: are women more susceptible to smoking effects than men? Thorax 2010;65:480–5. DOI:
Maharana B, Ladusingh L. Gender disparity in health and food expenditure in India among elderly. Int J Popul Res 2014;2014:150105. DOI:
Cheng Y-J, Liu Z-H, Yao F-J, et al. Current and former smoking and risk for venous thromboembolism: a systematic review and meta-analysis. PLoS Med 2013;10:e1001515. DOI:
Mahmoodi BK, Cushman M, Anne Næss I, et al. Association of traditional cardiovascular risk factors with venous thromboembolism: an individual participant data meta-analysis of prospective studies. Circulation 2017;135:7–16. DOI:
Glynn RJ, Rosner B. Comparison of risk factors for the competing risks of coronary heart disease, stroke, and venous thromboembolism. Am J Epidemiol 2005;162:975–82. DOI:
Samuel S, Gomez L, Savarraj JP, et al. Assessment of the relationship between body mass index and incidence of venous thromboembolism in hospitalized overweight and obese patients. Pharmacotherapy 2017;37:893–9. DOI:
Deflandre E, Degey S, Opsomer N, et al. Obstructive sleep apnea and Smoking as a risk factor for venous thromboembolism events: review of the literature on the common pathophysiological mechanisms. Obes Surg 2016;26:640–8. DOI:
Lippi G, Mattiuzzi C, Franchini M. Sleep apnea and venous thromboembolism. A systematic review. Thromb Haemost 2015;114:958–63. DOI:
Erelel M, Çuhadaro Ǧ Ç, Ece T, et al. The frequency of deep venous thrombosis and pulmonary embolus in acute exacerbation of chronic obstructive pulmonary disease. Respir Med 2002;96:515–8. DOI:
Dong W, Zhu Y, Du Y, et al. Association between features of COPD and risk of venous thromboembolism. Clin Respir J 2019;13:499–504. DOI:
Squizzato A, Gerdes VEA, Ageno W, et al. The coagulation system in endocrine disorders: a narrative review. Intern Emerg Med 2007;2:76–83. DOI:
Van Zaane B, Nur E, Squizzato A, et al. Hypercoagulable state in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab 2009;94:2743–50. DOI:
Sneeboer MMS, Hutten BA, Majoor CJ, et al. Oral and inhaled corticosteroid use and risk of recurrent pulmonary embolism. Thromb Res 2016;140:46–50. DOI:
Abdelghany. Can alveolar–arterial oxygen gradient predict severity of pulmonary embolism? Egypt J Bronchol 2019;13:273-9. DOI:
Cohoon KP, Ashrani AA, Crusan DJ, et al. Is infection an independent risk factor for venous thromboembolism? A population based case-control study. Am J Med 2018;131:307-316.e2. DOI:
Chan TC, Vilke GM, Pollack M, et al. Electrocardiographic manifestations: pulmonary embolism. J Emerg Med 2001;21:263-70. DOI:
Levis JT. ECG Diagnosis: pulmonary embolism. Perm J 2011;15:75. DOI:
Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev 2008;4:49–59. DOI:
Günay E, Sarınç Ulaşlı S, Akar O, et al. Neutrophil-to-lymphocyte ratio in chronic obstructive pulmonary disease: a retrospective study. Inflammation 2014;37:374–80. DOI:
Furutate R, Ishii T, Motegi T, et al. The neutrophil to lymphocyte ratio is related to disease severity and exacerbation in patients with chronic obstructive pulmonary disease. Intern Med Tokyo Jpn 2016;55:223–9. DOI:
Paliogiannis P, Fois AG, Sotgia S, et al. Neutrophil to lymphocyte ratio and clinical outcomes in COPD: recent evidence and future perspectives. Eur Respir Rev 2018;27:170113. DOI:
Hogg K. CRP in the diagnosis of pulmonary embolism. Emerg Med J 2010;27:A4. DOI:
Agarwal R, Zaheer MS, Ahmad Z, et al. The relationship between C-reactive protein and prognostic factors in chronic obstructive pulmonary disease. Multidiscip Respir Med 2013;8:63. DOI:
Gao D, Chen X, Wu H, et al. The levels of serum pro-calcitonin and high-sensitivity C-reactive protein in the early diagnosis of chronic obstructive pulmonary disease during acute exacerbation. Exp Ther Med 2017;14:193–8. DOI:

Supporting Agencies

All India Institute of Medical Sciences Rishikesh
Ruchi Dua, Department of Pulmonary Medicine, All India Institute of Medical Sciences, Rishikesh



How to Cite

Meitei, Soibam Pahel, Sudheer Tale, Arjun Kumar Negi, Ruchi Dua, Rohit Walia, and Sudhir Saxena. 2021. “Prevalence and Characteristics of Venous Thromboembolism in Severe Exacerbation of Chronic Obstructive Pulmonary Disease in a Tertiary Care Hospital in India”. Monaldi Archives for Chest Disease 91 (4).