How effective is disopyramide in treating pediatric hypertrophic cardiomyopathy? State of the art and future directions

Submitted: June 16, 2024
Accepted: August 3, 2024
Published: September 19, 2024
Abstract Views: 118
PDF_EARLY VIEW: 73
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Pediatric hypertrophic cardiomyopathy (HCM) has a wide range of clinical manifestations. Left ventricular outflow tract obstruction (LVOTO) at rest is present in up to one-third of children with HCM, with a further 50-60% of symptomatic children developing a gradient under exertion. Treatment options are limited, and there is a relative lack of data on the pediatric population. Disopyramide is a sodium channel blocker with negative inotropic properties. This therapy effectively reduces LVOTO in adults with HCM and delays surgical interventions, but it is not licensed for use in children. We aimed to review and analyze the influence of disopyramide over the pathophysiological, clinical, electrocardiographic, and echocardiographic characteristics of patients with HCM in infancy, childhood, adolescence, and adult age. While disopyramide remains a cornerstone in the management of pediatric HCM, the advent of mavacamten and aficamten heralds a new era of potential advancements. These emerging therapies could significantly improve the quality of life and prognosis for young patients with HCM.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Moak JP, Kaski JP. Hypertrophic cardiomyopathy in children. Heart Br Card Soc 2012;98:1044-54. DOI: https://doi.org/10.1136/heartjnl-2011-300531
Marian AJ. On predictors of sudden cardiac death in hypertrophic cardiomyopathy. J Am Coll Cardiol 2003;41:994-6. DOI: https://doi.org/10.1016/S0735-1097(02)03003-6
Critoph C, Elliott P. Hypertrophic cardiomyopathy. Card Electrophysiol Clin 2010;2:587-98. DOI: https://doi.org/10.1016/j.ccep.2010.09.010
Arbelo E, Protonotarios A, Gimeno JR, et al. 2023 ESC Guidelines for the management of cardiomyopathies. G Ital Cardiol 2006 2023;24:e1-127. [Article in Italian].
Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet 2013;381:242-55. DOI: https://doi.org/10.1016/S0140-6736(12)60397-3
Limongelli G, Sarkozy A, Pacileo G, et al. Genotype-phenotype analysis and natural history of left ventricular hypertrophy in LEOPARD syndrome. Am J Med Genet A 2008;146A:620-8. DOI: https://doi.org/10.1002/ajmg.a.32206
Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002;287:1308-20. DOI: https://doi.org/10.1001/jama.287.10.1308
Topriceanu C-C, Field E, Boleti O, et al. Disopyramide is a safe and effective treatment for children with obstructive hypertrophic cardiomyopathy. Int J Cardiol 2023;371:523-5. DOI: https://doi.org/10.1016/j.ijcard.2022.09.044
Di Salvo G, Pacileo G, Limongelli G, et al. Non sustained ventricular tachycardia in hypertrophic cardiomyopathy and new ultrasonic derived parameters. J Am Soc Echocardiogr 2010;23:581-90. DOI: https://doi.org/10.1016/j.echo.2010.02.013
Tedesco MA, Di Salvo G, Natale F, et al. The heart in neurofibromatosis type 1: an echocardiographic study. Am Heart J 2002;143:883-8. DOI: https://doi.org/10.1067/mhj.2002.122121
Pacileo G, Baldini L, Limongelli G, et al. Prolonged left ventricular twist in cardiomyopathies: a potential link between systolic and diastolic dysfunction. Eur J Echocardiogr 2011;12:841-9. DOI: https://doi.org/10.1093/ejechocard/jer148
Ganame J, Mertens L, Eidem BW, et al. Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations. Eur Heart J 2007;28:2886-94. DOI: https://doi.org/10.1093/eurheartj/ehm444
Franke A, Schöndube FA, Kühl HP, et al. Quantitative assessment of the operative results after extended myectomy and surgical reconstruction of the subvalvular mitral apparatus in hypertrophic obstructive cardiomyopathy using dynamic three-dimensional transesophageal echocardiography. J Am Coll Cardiol 1998;31:1641-9. DOI: https://doi.org/10.1016/S0735-1097(98)00133-8
Moscatelli S, Bianco F, Cimini A, et al. The use of stress cardiovascular imaging in pediatric population. Child Basel Switz 2023;10:218. DOI: https://doi.org/10.3390/children10020218
El Assaad I, Gauvreau K, Rizwan R, et al. Value of exercise stress echocardiography in children with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 2020;33:888-94.e2. DOI: https://doi.org/10.1016/j.echo.2020.01.020
Gaitonde M, Jones S, McCracken C, et al. Evaluation of left ventricular outflow gradients during staged exercise stress echocardiography helps differentiate pediatric patients with hypertrophic cardiomyopathy from athletes and normal subjects. Pediatr Exerc Sci 2021;33:196-202. DOI: https://doi.org/10.1123/pes.2020-0217
Ommen SR, Ho CY, Asif IM, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR guideline for the management of hypertrophic cardiomyopathy: a report of the American Heart Association/American College of Cardiology joint committee on clinical practice guidelines. J Am Coll Cardiol 2024;83:2324-405. DOI: https://doi.org/10.1016/j.jacc.2024.02.014
Borlaug BA, Omote K. Beta-blockers and exercise hemodynamics in hypertrophic cardiomyopathy. J Am Coll Cardiol 2022;79:1576-8. DOI: https://doi.org/10.1016/j.jacc.2022.02.021
Stenson RE, Flamm MD, Harrison DC, et al. Hypertrophic subaortic stenosis. Clinical and hemodynamic effects of long-term propranolol therapy. Am J Cardiol 1973;31:763-73. DOI: https://doi.org/10.1016/0002-9149(73)90012-X
Taha M, Dahat P, Toriola S, et al. Metoprolol or verapamil in the management of patients with hypertrophic cardiomyopathy: a systematic review. Cureus 2023;15:e43197. DOI: https://doi.org/10.7759/cureus.43197
Maron BJ, Dearani JA, Ommen SR, et al. Low operative mortality achieved with surgical septal myectomy: role of dedicated hypertrophic cardiomyopathy centers in the management of dynamic subaortic obstruction. J Am Coll Cardiol 2015;66:1307-8. DOI: https://doi.org/10.1161/circ.132.suppl_3.13977
Nguyen A, Schaff HV. Surgical myectomy: subaortic, midventricular, and apical. Cardiol Clin 2019;37:95-104. DOI: https://doi.org/10.1016/j.ccl.2018.08.006
Hong JH, Schaff HV, Nishimura RA, et al. Mitral regurgitation in patients with hypertrophic obstructive cardiomyopathy: implications for concomitant valve procedures. J Am Coll Cardiol 2016;68:1497-504. DOI: https://doi.org/10.1016/j.jacc.2016.07.735
Hang D, Schaff HV, Nishimura RA, et al. Accuracy of jet direction on doppler echocardiography in identifying the etiology of mitral regurgitation in obstructive hypertrophic cardiomyopathy. J Am Soc Echocardiogr 2019;32:333-40. DOI: https://doi.org/10.1016/j.echo.2018.10.011
Finocchiaro G, Haddad F, Kobayashi Y, et al. Impact of Septal reduction on left atrial size and diastole in hypertrophic cardiomyopathy. Echocardiography 2016;33:686-94. DOI: https://doi.org/10.1111/echo.13158
Geske JB, Konecny T, Ommen SR, et al. Surgical myectomy improves pulmonary hypertension in obstructive hypertrophic cardiomyopathy. Eur Heart J 2014;35:2032-9. DOI: https://doi.org/10.1093/eurheartj/eht537
Desai MY, Bhonsale A, Patel P, et al. Exercise echocardiography in asymptomatic HCM: exercise capacity, and not LV outflow tract gradient predicts long-term outcomes. JACC Cardiovasc Imaging 2014;7:26-36. DOI: https://doi.org/10.1016/j.jcmg.2013.08.010
Desai MY, Smedira NG, Dhillon A, et al. Prediction of sudden death risk in obstructive hypertrophic cardiomyopathy: Potential for refinement of current criteria. J Thorac Cardiovasc Surg 2018;156:750-9.e3. DOI: https://doi.org/10.1016/j.jtcvs.2018.03.150
Laredo M, Khraiche D, Raisky O, et al. Long-term results of the modified Konno procedure in high-risk children with obstructive hypertrophic cardiomyopathy. J Thorac Cardiovasc Surg 2018;156:2285-94.e2. DOI: https://doi.org/10.1016/j.jtcvs.2018.06.040
Ostman-Smith I. Hypertrophic cardiomyopathy in childhood and adolescence - strategies to prevent sudden death. Fundam Clin Pharmacol 2010;24:637-52. DOI: https://doi.org/10.1111/j.1472-8206.2010.00869.x
Coppini R, Ferrantini C, Pioner JM, et al. Electrophysiological and contractile effects of disopyramide in patients with obstructive hypertrophic cardiomyopathy: a translational study. JACC Basic Transl Sci 2019;4:795-813. DOI: https://doi.org/10.1016/j.jacbts.2019.06.004
Sherrid MV, Barac I, McKenna WJ, et al. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 2005;45:1251-8. DOI: https://doi.org/10.1016/j.jacc.2005.01.012
Sherrid MV, Shetty A, Winson G, et al. Treatment of obstructive hypertrophic cardiomyopathy symptoms and gradient resistant to first-line therapy with β-blockade or verapamil. Circ Heart Fail 2013;6:694-702. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.112.000122
Maurizi N, Chiriatti C, Fumagalli C, et al. Real-world use and predictors of response to disopyramide in patients with obstructive hypertrophic cardiomyopathy. J Clin Med 2023;12:2725. DOI: https://doi.org/10.3390/jcm12072725
O’Connor MJ, Miller K, Shaddy RE, et al. Disopyramide use in infants and children with hypertrophic cardiomyopathy. Cardiol Young 2018;28:530-5. DOI: https://doi.org/10.1017/S1047951117002384
Sherrid MV, Arabadjian M. A primer of disopyramide treatment of obstructive hypertrophic cardiomyopathy. Prog Cardiovasc Dis 2012;54:483-92. DOI: https://doi.org/10.1016/j.pcad.2012.04.003
Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. J Thorac Cardiovasc Surg 2021;162:e23-106.
Yedidya I, Elbaz Greener G, Vaturi M, et al. Impact of short-acting disopyramide on left ventricular mechanics evaluated by strain analysis in patients with hypertrophic obstructive cardiomyopathy. J Clin Med 2022;11:7325. DOI: https://doi.org/10.3390/jcm11247325
Haruki S, Minami Y, Suzuki A, et al. Effects of flecainide on left ventricular pressure gradient and symptoms in obstructive hypertrophic cardiomyopathy: a comparison of flecainide and disopyramide. Heart Vessels 2015;30:604-10. DOI: https://doi.org/10.1007/s00380-014-0534-3
Schenk A, Fields N. Mavacamten - a targeted therapy for hypertrophic cardiomyopathy. J Cardiovasc Pharmacol 2023;81:317-26. DOI: https://doi.org/10.1097/FJC.0000000000001416
Dong T, Alencherry B, Ospina S, et al. Review of mavacamten for obstructive hypertrophic cardiomyopathy and future directions. Drug Des Devel Ther 2023;17:1097-106. DOI: https://doi.org/10.2147/DDDT.S368590
Olivotto I, Oreziak A, Barriales-Villa R, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2020;396:759-69. DOI: https://doi.org/10.1016/S0140-6736(20)31792-X
Rader F, Oręziak A, Choudhury L, et al. Mavacamten treatment for symptomatic obstructive hypertrophic cardiomyopathy: interim results from the MAVA-LTE study, EXPLORER-LTE cohort. JACC Heart Fail 2024;12:164-77. DOI: https://doi.org/10.1016/j.jchf.2023.09.028
Dalo JD, Weisman ND, White CM. Mavacamten, a first-in-class cardiac myosin inhibitor for obstructive hypertrophic cardiomyopathy. Ann Pharmacother 2023;57:489-502. DOI: https://doi.org/10.1177/10600280221117812
Hegde SM, Lester SJ, Solomon SD, et al. Effect of mavacamten on echocardiographic features in symptomatic patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 2021;78:2518-532. DOI: https://doi.org/10.1016/j.jacc.2021.09.1381
Desai MY, Hajj Ali A. Mavacamten, an alternative to septal reduction therapy for patients with hypertrophic cardiomyopathy. Heart Int 2023;17:2-4. DOI: https://doi.org/10.17925/HI.2023.17.1.2
Willeford A, Silva Enciso J. Transitioning disopyramide to mavacamten in obstructive hypertrophic cardiomyopathy: a case series and clinical guide. Pharmacotherapy 2023;43:1397-404. DOI: https://doi.org/10.1002/phar.2874
Sebastian SA, Padda I, Lehr EJ, et al. Aficamten: a breakthrough therapy for symptomatic obstructive hypertrophic cardiomyopathy. Am J Cardiovasc Drugs Drugs Devices Interv 2023;23:519-32. DOI: https://doi.org/10.1007/s40256-023-00599-0
Maron MS, Masri A, Choudhury L, et al. Phase 2 study of aficamten in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 2023;81:34-45. DOI: https://doi.org/10.1016/j.jacc.2022.10.020
Coats CJ, Maron MS, Abraham TP, et al. Exercise capacity in patients with obstructive hypertrophic cardiomyopathy: SEQUOIA-HCM baseline characteristics and study design. JACC Heart Fail 2024;12:199-215. DOI: https://doi.org/10.1016/j.jchf.2023.10.004
Ottaviani A, Mansour D, Molinari LV, et al. Revisiting diagnosis and treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. J Clin Med 2023;12:5710. DOI: https://doi.org/10.3390/jcm12175710

How to Cite

Del Vecchio, Karin, Caterina Rizzardi, Alice Pozza, Francesco Prati, Luisa Ye, Alessia Fattoretto, Elena Reffo, and Giovanni Di Salvo. 2024. “How Effective Is Disopyramide in Treating Pediatric Hypertrophic Cardiomyopathy? State of the Art and Future Directions”. Monaldi Archives for Chest Disease, September. https://doi.org/10.4081/monaldi.2024.3084.