Continuous positive airway pressure therapy in the management of hypercapnic cardiogenic pulmonary edema

https://doi.org/10.4081/monaldi.2021.1725

Authors

  • Alfonso Sforza | alfosfo@hotmail.it Emergency Team, CTO Hospital, Naples, Italy.
  • Mario Guarino Emergency Team, CTO Hospital, Naples, Italy.
  • Claudia Sara Cimmino Emergency Team, CTO Hospital, Naples, Italy.
  • Arturo Izzo Emergency Team, CTO Hospital, Naples, Italy.
  • Giovanna Cristiano Emergency Team, CTO Hospital, Naples, Italy. https://orcid.org/0000-0002-4980-5331
  • Costantino Mancusi Federico II University Hospital, Naples, Italy. https://orcid.org/0000-0001-6690-1408
  • Gerolamo Sibilio Coronary Care Unit, Santa Maria delle Grazie Hospital, Pozzuoli (NA), Italy.
  • Maria Viviana Carlino Emergency Team, CTO Hospital, Naples, Italy.

Abstract

Continuous positive airway pressure (CPAP) therapy or non-invasive ventilation (NIV) represent the first line therapy for acute cardiogenic pulmonary edema (CPE) together with medical therapy. CPAP benefits in acute CPE with normo-hypocapnia are known, but it is not clear whether the use of CPAP is safe in the hypercapnic patients. The aim of this study is to evaluate CPAP efficacy in the treatment of hypercapnic CPE. We enrolled 9 patients admitted to the emergency room with diagnosis of acute CPE based on history, clinical examination, arterial blood gas analysis (ABG) and lung-heart ultrasound examination. We selected patients with hypercapnia (pCO2 >50 mmHg) and bicarbonate levels <30 mEq/L. All patients received medical therapy with furosemide and nitrates and helmet CPAP therapy. All patients received a second and a third ABG, respectively at 30 and 60 min. Primary end-points of the study were respiratory distress resolution, pCO2 reduction, pH improvement, lactates normalization and the no need for non-invasive ventilation or endo-tracheal intubation. All patients showed resolution of respiratory distress with CPAP weaning and shift to Venturi mask with no need for NIV or endo-tracheal intubation. Serial ABG tests showed clear reduction in CO2 levels with improvement of pH and progressive lactate reduction. CPAP therapy can be effective in the treatment of hypercapnic CPE as long as the patients have no signs of chronic hypercapnia on ABG and as long as the diagnosis of heart failure is supported by bedside lung-heart ultrasound examination.   

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Mebazaa A, Yilmaz MB, Levy P, et al. Recommendations on pre-hospital & early hospital management of acute heart failure: a consensus paper from the HF Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine. Eur J Heart Fail 2015;17:544-58. DOI: https://doi.org/10.1002/ejhf.289

Bellone A, Vettorello M, Monari A, et al. Noninvasive pressure support ventilation vs. continuous positive airway pressure in acute hypercapnic pulmonary edema. Intensive Care Med 2005;31:807-11. DOI: https://doi.org/10.1007/s00134-005-2649-6

Sforza A, Mancusi C, Carlino MV, et al. Diagnostic performance of multi-organ ultrasound with pocket-sized device in the management of acute dyspnea. Cardiovasc Ultrasound 2017;15:17. DOI: https://doi.org/10.1186/s12947-017-0105-8

Carlino MV, Paladino F, Sforza A, et al. Assessment of left atrial size in addition to focused cardiopulmonary ultrasound improves diagnostic accuracy of acute heart failure in the Emergency Department. Echocardiography 2018;35:785-91. DOI: https://doi.org/10.1111/echo.13851

Aliberti S, Brambilla AM, Cosentini R. Noninvasive ventilation or continuous positive airway pressure in pulmonary edema patients with respiratory acidosis? Look at the bicarbonates. Intensive Care Med 2011;37:2050-1. DOI: https://doi.org/10.1007/s00134-011-2361-7

Wagner PD. The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases. Eur Respir J 2015;45:227-43. DOI: https://doi.org/10.1183/09031936.00039214

Aliberti S, Piffer F, Brambilla AM, et al. Acidemia does not affect outcomes of patients with acute cardiogenic pulmonary edema treated with continuous positive airway pressure. Crit Care 2010;14:R196. DOI: https://doi.org/10.1186/cc9315

Sforza A, Carlino MV, Guarino M, et al. Anterior vs lateral symmetric interstitial syndrome in the diagnosis of acute heart failure. Int J Cardiol 2019;280:130-2. DOI: https://doi.org/10.1016/j.ijcard.2019.01.013

Ferre RM, Chioncel O, Pang PS, et al. Acute heart failure: the role of focused emergency cardiopulmonary ultrasound in identification and early management. Eur J Heart Fail 2015;17:1223-7. DOI: https://doi.org/10.1002/ejhf.421

Mancusi C, Carlino MV, Sforza A. Point-of-care ultrasound with pocket-size devices in emergency department. Echocardiography 2019;36:1755-64. DOI: https://doi.org/10.1111/echo.14451

Downloads

Published
2021-04-01
Info
Issue
Section
Cardiology - Original Articles
Keywords:
dyspnea, heart failure, blood gas analysis, hypercapnia, CPAP, lung-heart ultrasound
Statistics
  • Abstract views: 165

  • PDF: 101
How to Cite
Sforza, Alfonso, Mario Guarino, Claudia Sara Cimmino, Arturo Izzo, Giovanna Cristiano, Costantino Mancusi, Gerolamo Sibilio, and Maria Viviana Carlino. 2021. “Continuous Positive Airway Pressure Therapy in the Management of Hypercapnic Cardiogenic Pulmonary Edema”. Monaldi Archives for Chest Disease, April. https://doi.org/10.4081/monaldi.2021.1725.

Most read articles by the same author(s)