Systemic inflammation in patients with Takotsubo syndrome: a review of mechanistic and clinical implications

Submitted: December 4, 2020
Accepted: January 10, 2021
Published: March 12, 2021
Abstract Views: 1160
PDF: 603
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Over recent decades, systemic inflammation  as  quantified  with  inflammation  markers  or  indices has been extensively  investigated  in the setting of  various  cardiovascular  conditions  including heart failure (HF),  acute coronary syndromes (ACS). In contrast, systemic inflammation  in patients with  takotsubo syndrome (TTS) has been an underrated  phenomenon in clinical practice. On the other hand, experimental and clinical data  have been  rapidly  accumulating  in the recent years  regarding   pathogenetic, prognostic as well as therapeutic implications of  systemic inflammation in TTS.  Accordingly, the present article  aims to provide a general perspective  on mechanistic and  clinical aspects of  systemic  inflammation in the setting of  TTS.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Yalta T, Yalta K. Systemic ınflammation and arrhythmogenesis: a review of mechanistic and clinical perspectives. Angiology 2018;69:288-96. DOI: https://doi.org/10.1177/0003319717709380
Yalta K, Yilmaztepe M, Zorkun C. Left ventricular dysfunction in the setting of takotsubo cardiomyopathy: a review of clinical patterns and practical ımplications. Card Fail Rev 2018;4:14-20. DOI: https://doi.org/10.15420/cfr.2018:24:2
Santoro F, Guastafierro F, Zimotti T, et al. Neutrophil/lymphocyte ratio predicts in-hospital complications in Takotsubo syndrome. Results from a prospective multi-centerregistry. Clin Cardiol 2020;10.1002/clc.23442. DOI: https://doi.org/10.1002/clc.23442
Yalta K, Yalta T. Physically triggered takotsubo cardiomyopathy has a worse prognosis: Potential roles of systemic inflammation and coronary slow flow phenomenon. Int J Cardiol 2017;242:31-32. DOI: https://doi.org/10.1016/j.ijcard.2017.03.082
Santoro F, Tarantino N, Ferraretti A, et al. Serum interleukin 6 and 10 levels in Takotsubo cardiomyopathy: Increased admission levels may predict adverse events at follow-up. Atherosclerosis 2016;254:28-34. DOI: https://doi.org/10.1016/j.atherosclerosis.2016.09.012
Yalta K, Yalta T. Cancer and takotsubo cardiomyopathy: More questions than answers. Int J Cardiol 2017;242:13. DOI: https://doi.org/10.1016/j.ijcard.2017.03.039
Sattler K, El-Battrawy I, Lang S, et al. Prevalence of cancer in Takotsubo cardiomyopathy: Short and long-term outcome. Int J Cardiol 2017;238:159-65. DOI: https://doi.org/10.1016/j.ijcard.2017.02.093
Scally C, Abbas H, Ahearn T, et al. Myocardial and systemic ınflammation in acute stress-ınduced (Takotsubo) cardiomyopathy. Circulation 2019;139:1581-92. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.037975
Fernández-Ruiz I. Inflammation linked to Takotsubo. Nat Rev Cardio. 2019;16:5. DOI: https://doi.org/10.1038/s41569-018-0128-3
Kim MH, Gorouhi F, Ramirez S, et al. Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2-adrenergic receptor-mediated upregulation of IL-6. J Invest Dermatol 2014;134:809-87. DOI: https://doi.org/10.1038/jid.2013.415
Flierl MA, Rittirsch D, Nadeau BA, et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 2007;449:721-5. DOI: https://doi.org/10.1038/nature06185
Bergmann M, Sautner T. Immunomodulatory effects of vasoactive catecholamines. Wien Klin Wochenschr 2002;114:752-61.
Ng TM, Toews ML. Impaired norepinephrine regulation of monocyte inflammatory cytokine balance in heart failure. World J Cardiol 2016;8:584-9. DOI: https://doi.org/10.4330/wjc.v8.i10.584
von Haehling S, Genth-Zotz S, Bolger AP, et al. Effect of noradrenaline and isoproterenol on lipopolysaccharide-induced tumor necrosis factor-alpha production in whole blood from patients with chronic heart failure and the role of beta-adrenergic receptors. Am J Cardiol 2005;95:885-9. DOI: https://doi.org/10.1016/j.amjcard.2004.12.022
Nakano T, Onoue K, Nakada Y, et al. Alteration of β-Adrenoceptor Signaling in Left Ventricle of Acute Phase Takotsubo Syndrome: a Human Study. Sci Rep 2018;8:12731. DOI: https://doi.org/10.1038/s41598-018-31034-z
Pongratz G, Straub RH. The sympathetic nervous response in inflammation. Arthritis Res Ther 2014;16:504. DOI: https://doi.org/10.1186/s13075-014-0504-2
Sung CP, Arleth AJ, Feuerstein GZ. Neuropeptide Y upregulates the adhesiveness of human endothelial cells for leukocytes. Circ Res 1991;68:314-8. DOI: https://doi.org/10.1161/01.RES.68.1.314
Burgdorf C, Kurowski V, Bonnemeier H, et al. Long-term prognosis of the transient left ventricular dysfunction syndrome (Tako-Tsubo cardiomyopathy): focus on malignancies. Eur J Heart Fail 2008;10:1015-9. DOI: https://doi.org/10.1016/j.ejheart.2008.07.008
Romero-Bermejo FJ, Ruiz-Bailen M, Gil-Cebrian J, et al. Sepsis-induced cardiomyopathy. Curr Cardiol Rev 2011;7:163-83. DOI: https://doi.org/10.2174/157340311798220494
Ciutac AM, Dawson D. The role of inflammation in stress cardiomyopathy. Trends Cardiovasc Med 2020;S1050-1738(20)30042-6. DOI: https://doi.org/10.1016/j.tcm.2020.03.005
Geng S, Mullany D, Fraser JF. Takotsubo cardiomyopathy associated with sepsis due to Streptococcus pneumoniae pneumonia. Crit Care Resusc 2008;10:231-4.
Yalta K, Gürdoğan M. Plasma histone H4 and ıts ımplications in the setting of sepsis-related myocardial dysfunction. Balkan Med J. 2020;37:119-20. DOI: https://doi.org/10.4274/balkanmedj.galenos.2020.2019.12.144
Li Y, Ge S, Peng Y, Chen X. Inflammation and cardiac dysfunction during sepsis, muscular dystrophy, and myocarditis. Burns Trauma 2013;1:109-21. DOI: https://doi.org/10.4103/2321-3868.123072
Faqihi F, Alharthy A, Alshaya R, et al. Reverse takotsubo cardiomyopathy in fulminant COVID-19 associated with cytokine release syndrome and resolution following therapeutic plasma exchange: a case-report. BMC Cardiovasc Disord 2020;20:389. DOI: https://doi.org/10.1186/s12872-020-01665-0
Yalta K, Yetkin E, Taylan G, et al. Acute autoimmune reaction: An obscure mechanism of COVID-19 related myocardial injury. Heart eLetters https://heart.bmj.com/content/106/15/1154.responses#acute-autoimmune-reaction-an-obscure-mechanism-of-covid-19-related-myocardial-injury-
Desai HD, Jadeja DM, Sharma K. Takotsubo syndrome a rare entity in patients with COVID-19: An updated review of case-reports and case-series. Int J Cardiol Heart Vasc 2020;29:100604. DOI: https://doi.org/10.1016/j.ijcha.2020.100604
Wilson HM, Cheyne L, Brown PAJ, et al. Characterization of the myocardial ınflammatory response in acute stress-ınduced (takotsubo) cardiomyopathy. JACC Basic Transl Sci. 2018;3:766-78. DOI: https://doi.org/10.1016/j.jacbts.2018.08.006
Scally C, Ahearn T, Rudd A, et al. Right ventricular ınvolvement and recovery after acute stress-ınduced (tako-tsubo) cardiomyopathy. Am J Cardiol 2016;117:775-80. DOI: https://doi.org/10.1016/j.amjcard.2015.11.057
Neil CJ, Nguyen TH, Singh K, et al. Relation of delayed recovery of myocardial function after takotsubo cardiomyopathy to subsequent quality of life. Am J Cardiol 2015;115:1085-9. DOI: https://doi.org/10.1016/j.amjcard.2015.01.541
Eitel I, Lücke C, Grothoff M, et al. Inflammation in takotsubo cardiomyopathy: insights from cardiovascular magnetic resonance imaging. Eur Radiol 2010;20:422-31. DOI: https://doi.org/10.1007/s00330-009-1549-5
Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 2011;306:277-86. DOI: https://doi.org/10.1001/jama.2011.992
Nakamori S, Matsuoka K, Onishi K, et al. Prevalence and signal characteristics of late gadolinium enhancement on contrast-enhanced magnetic resonance imaging in patients with takotsubo cardiomyopathy. Circ J 2012;76:914-21. DOI: https://doi.org/10.1253/circj.CJ-11-1043
Foreman RD, Garrett KM, Blair RW. Mechanisms of cardiac pain. Compr Physiol 2015;5:929-60. DOI: https://doi.org/10.1002/cphy.c140032
Pessoa PM, Xavier SS, Lima SL, et al. Assessment of takotsubo (ampulla) cardiomyopathy using iodine-123 metaiodobenzylguanidine scintigraphy. Acta Radiol 2006;47:1029-35. DOI: https://doi.org/10.1080/02841850600928482
Manabe O, Naya M, Oyama-Manabe N, et al. The role of multimodality imaging in takotsubo cardiomyopathy. J Nucl Cardiol 2019;26:1602-16. DOI: https://doi.org/10.1007/s12350-018-1312-x
Murakami T, Yoshikawa T, Maekawa Y, et al. Characterization of predictors of in-hospital cardiac complications of takotsubo cardiomyopathy: multi-center registry from Tokyo CCU Network. J Cardiol 2014;63:269-73. DOI: https://doi.org/10.1016/j.jjcc.2013.09.003
Van Linthout S, Tschöpe C. Inflammation - Cause or consequence of heart failure or both? Curr Heart Fail Rep 2017;14:251-5. DOI: https://doi.org/10.1007/s11897-017-0337-9
Yoshida T, Friehs I, Mummidi S, et al. Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL-18BP expression in a rabbit model. IL-18 potentiates TNF-α-induced cardiomyocyte death. J Mol Cell Cardiol 2014;75:141-51. DOI: https://doi.org/10.1016/j.yjmcc.2014.07.007
Yalta K, Yetkin E, Yalta T. Recurrent takotsubo cardiomyopathy: Further insights into morphological patterns. Cardiovasc Pathol 2020;48:107225. DOI: https://doi.org/10.1016/j.carpath.2020.107225
Yalta K, Gurdogan M, Palabiyik O. Apical aneurysm or transient apical ballooning? Potential dilemma in risk stratification of hypertrophic cardiomyopathy. Heart 2020;106:1111. DOI: https://doi.org/10.1136/heartjnl-2020-316747
Yalta K, Ucar F, Yilmaztepe M, et al. Takotsubo cardiomyopathy and acute coronary syndromes: Are they always mutually exclusive? Indian Heart J 2018;70:326-27. DOI: https://doi.org/10.1016/j.ihj.2017.08.006
Yalta K, Yilmaztepe M, Ucar F, et al. Tako tsubo cardiomyopathy? Acute myocarditis? Or both? Not so easy to diagnose in certain settings. Int J Cardiovasc Res 2017;6:3. DOI: https://doi.org/10.4172/2324-8602.1000310
Chhabra L. Myopericarditis and Takotsubo cardiomyopathy association. Int J Cardiol 2015;186:143. DOI: https://doi.org/10.1016/j.ijcard.2015.03.228
de Miguel V, Arias A, Paissan A, et al. Catecholamine-induced myocarditis in pheochromocytoma. Circulation 2014;129:1348-9. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.002762
Lee SH, Chen YC, Chen YJ, et al. Tumor necrosis factor-alpha alters calcium handling and increases arrhythmogenesis of pulmonary vein cardiomyocytes. Life Sci 2007;80:1806-15. DOI: https://doi.org/10.1016/j.lfs.2007.02.029
Grandy SA, Brouillette J, Fiset C. Reduction of ventricular sodium current in a mouse model of HIV. J Cardiovasc Electrophysiol 2010;21:916-92. DOI: https://doi.org/10.1111/j.1540-8167.2009.01713.x
Acar GR, Akkoyun M, Nacar AB, et al. Evaluation of Tp-e interval and Tp-e/QT ratio in patients with rheumatoid arthritis. Turk Kardiyol Dern Ars 2014;42:29-34. DOI: https://doi.org/10.5543/tkda.2014.52959
Panoulas VF, Toms TE, Douglas KM, et al. Prolonged QTc interval predicts all-cause mortality in patients with rheumatoid arthritis: an association driven by high inflammatory burden. Rheumatology (Oxford) 2014;53:131-1. DOI: https://doi.org/10.1093/rheumatology/ket338
Okazaki R, Iwasaki YK, Miyauchi Y, et al. Lipopolysaccharide induces atrial arrhythmogenesis via down-regulation of L-type Ca2+ channel genes in rats. Int Heart J 2009;50:353-63. DOI: https://doi.org/10.1536/ihj.50.353
Lew WY, Yasuda S, Yuan T, et al. Endotoxin-induced cardiac depression is associated with decreased cardiac dihydropyridine receptors in rabbits. J Mol Cell Cardiol 1996;28:1367-71. DOI: https://doi.org/10.1006/jmcc.1996.0127
Foley ED, Diaz R, Castresana MR. Prolonged circulatory support with an Impella assist device in the management of cardiogenic shock associated with takotsubo syndrome, severe sepsis and acute respiratory distress syndrome. SAGE Open Med Case Rep 2017;5:2050313X17741013. DOI: https://doi.org/10.1177/2050313X17741013
Nakamura M, Nakagaito M, Hori M, et al. A case of Takotsubo cardiomyopathy with cardiogenic shock after influenza infection successfully recovered by IMPELLA support. J Artif Organs 2019;22:330-3. DOI: https://doi.org/10.1007/s10047-019-01112-8
van den Oever IA, Sattar N, Nurmohamed MT. Thromboembolic and cardiovascular risk in rheumatoid arthritis: role of the haemostatic system. Ann Rheum Dis 2014;73:954-57. DOI: https://doi.org/10.1136/annrheumdis-2013-204767
Fitzgibbons TP, Edwards YJK, Shaw P, et al. Activation of ınflammatory and pro-thrombotic pathways in acute stress cardiomyopathy. Front Cardiovasc Med 2017;4:49. DOI: https://doi.org/10.3389/fcvm.2017.00049
Yalta K, Yalta T, Gurdogan M. Takotsubo syndrome co-exıstıng with acute myocardial infarctıon: an overlooked phenomenon in clinical practice. N Z Med J 2020;133:81-2.
Yalta K, Yilmaztepe M, Ucar F, et al. Coronaryslowflow in thesetting of Tako-tsubocardiomyopathy: A causativefactor? An innocentbystander? Or a prognosticsign? Int J Cardiol 2015;198:229-31. DOI: https://doi.org/10.1016/j.ijcard.2015.06.146
Yalta K, Sivri N, Yalta T. Neuropeptide Y-induced coronary microvascular dysfunction: a significant contributor to the adverse outcomes in stress cardiomyopathy? Int J Cardiol 2011;147:284. DOI: https://doi.org/10.1016/j.ijcard.2010.09.095
Kawaji T, Shiomi H, Morimoto T, et al. Clinical impact of left ventricular outflow tract obstruction in takotsubo cardiomyopathy. Circ J 2015;79:839-46. DOI: https://doi.org/10.1253/circj.CJ-14-1148
Yalta K, Yalta T. Takotsubo cardiomyopathy and its implications in the setting of acute manic attack. Proc (Bayl Univ Med Cent) 2020;33:473-4. DOI: https://doi.org/10.1080/08998280.2020.1765664
Liu J, Lin PC, Zhou BP. Inflammation fuels tumor progress and metastasis. Curr Pharm Des 2015;21:3032-40. DOI: https://doi.org/10.2174/1381612821666150514105741
Yalta K, Yilmaz MB, Yalta T, et al. Late versus early myocardial remodeling after acute myocardial ınfarction: a comparative review on mechanistic ınsights and clinical implications. J Cardiovasc Pharmacol Ther 2020;25:15-26. DOI: https://doi.org/10.1177/1074248419869618

How to Cite

Yalta, Kenan, Ertan Yetkin, and Tulin Yalta. 2021. “Systemic Inflammation in Patients With Takotsubo Syndrome: A Review of Mechanistic and Clinical Implications”. Monaldi Archives for Chest Disease 91 (2). https://doi.org/10.4081/monaldi.2021.1718.