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Abstract  

The high mortality rate and extended ventilator use associated with invasive mechanical 

ventilation in patients with severe COVID-19 have sparked a debate about the use of non-

invasive respiratory support, such as high-flow nasal cannula, continuous positive airway 

pressure, and non-invasive ventilation (NIV), as treatment options. According to the European 

Respiratory Society and the American Thoracic Society clinical practice guidelines, NIV is 

recommended to prevent intubation in hypoxemic acute respiratory failure in patients with 

community-acquired pneumonia or early acute respiratory distress syndrome without major 

organ dysfunction. Central to this debate is the role of NIV in managing acute hypoxemic 

respiratory failure. However, there are concerns that NIV might delay the timely intubation 

and lung-protective ventilation in patients with more advanced disease, potentially worsening 

respiratory parameters due to self-inflicted lung injury. This review aims to explore the current 

literature, focusing on the rationale, patient selection, and outcomes associated with the use 

of NIV in COVID-19 patients with acute respiratory failure, to better understand its role in this 

context. 
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Introduction  

COVID-19, short for "Coronavirus Disease 2019," is caused by the novel coronavirus SARS-

CoV-2 [1]. First identified in December 2019 in Wuhan, China, the virus quickly spread 

worldwide, triggering a global pandemic in early 2020. The pandemic has deeply affected 

human life and strained healthcare systems [2,3]. COVID-19 has led to millions of infections, 

deaths, and long-term health consequences. While many experience mild or no symptoms, 

severe illness leading to respiratory failure and hospitalization has been a major concern [4]. 

Managing acute respiratory distress syndrome [ARDS], and acute respiratory failure [ARF] in 

COVID-19 patients has been challenging [5-11]. Pathophysiological mechanisms of ARDS 

implicated in COVID include increased alveolar-capillary permeability which impairs gas 

exchange, whilst ARF occurs when the respiratory system fails to adequately oxygenate the 

blood or remove carbon dioxide, causing hypoxemia and/or hypercapnia [12]. Treating ARDS 

and ARF requires a variety of interventions to support lung function, mainly through oxygen 

delivery to prevent respiratory decompensation [12,13]. Initial treatment involves 

administering oxygen via an intranasal catheter or an air-entrainment mask. However, if 

conditions worsen, as seen in ARDS or ARF, higher oxygen levels are necessary. High oxygen 

levels are often delivered through helmet-based non-invasive ventilation [NIV], which reduces 

air leaks and the risk of aerosolization. NIV can improve lung health in patients experiencing 

respiratory distress and prevent the need for invasive mechanical ventilation. 

 

SARS-CoV-2: molecular mechanisms of infection and cellular damage  

SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA virus from the 

Betacoronavirus genus [14]. We have learned that SARS-CoV-2 primarily infects cells via the 

angiotensin-converting enzyme 2 [ACE2] receptor, which is present on the surface of various 

human cells, particularly in the respiratory tract, but also in the heart, kidneys, testes, 

gastrointestinal tract, liver, vascular endothelium, and brain [1,15,16]. The infection and 

cellular damage caused by SARS-CoV-2 involve several molecular mechanisms, including 

attachment and entry, which have been extensively reviewed [1,15-17]. Once the virus enters 

the host cell and its genomic RNA is released into the cytoplasm, a series of defence 

mechanisms are initiated, triggering the expression of proinflammatory cytokines such as IL-1, 

IL-2, IL-6, IL-7, IL-10, TNF-α, and GCSF, leading to a phenomenon known as a cytokine storm 

[17-19]. Furthermore, the possible correlation with exposure to pollutants cannot be excluded, 

considering that particulate matter can be categorized by size and composition, with fine 

particulates posing the greatest health risk due to their ability to penetrate deep into the lower 

airways. Epidemiological evidence links fine particulate exposure to inflammation in the 



 
 

alveoli, altered blood coagulability, and increased risk of respiratory and cardiovascular events 

[17]. Urban populations are particularly vulnerable due to higher exposure to vehicle 

emissions and other pollutants, which can interact with aeroallergens like pollen to promote 

allergic sensitization and airway obstruction, especially in predisposed individuals. since. 

PM1.0 +Allergens together exhibited the greatest capacity to induce type II lung epithelium 

(A549) cells cytokine responses and suggest the potential interaction between particulates and 

pollen is capable of forming micro compounds that can reach the acinar lung units and are 

able to activate cells of the immune system which may dysregulate the inflammatory response 

[17-21]. Uncontrolled hyperinflammation causes vasoconstriction, fibrosis, increased vascular 

permeability, and activation of the coagulation cascade, resulting in microthrombi formation 

blood clots that contribute to lung damage and [22,23] may promotes the onset of ARF, a 

critical condition that causes hypoxemia and requires complex treatments such as mechanical 

ventilation. 

 

Pathogenic mechanisms of COVID-19-related acute respiratory failure 

The primary mechanisms underlying acute hypoxemic respiratory failure in SARS-CoV-2 

pneumonia include dysregulation of pulmonary perfusion, formation of microthrombi in the 

pulmonary circulation, intrapulmonary shunting, and alterations in gas diffusion across the 

alveolar-capillary membrane. Each of these factors contributes to the progression and clinical 

presentation of ARF, defined as a P/F ratio less than 300 mmHg [22-26]. Increased shear stress 

is implicated in causing vasoplegia and subsequently disrupting the regulation of pulmonary 

arterial flow [24]. ACE2, the primary receptor for SARS-CoV-2 entry into human cells [15], 

converts angiotensin II to angiotensin 1-7. The latter plays a crucial role in degrading 

bradykinin and regulating pulmonary arterial flow, so variations in ACE2 levels are associated 

with changes in lung perfusion regulation [27,28]. Intrapulmonary shunting, resulting from 

alterations in the ventilation-perfusion [V/Q] ratio, is one of the earliest mechanisms causing 

hypoxemia in acute respiratory failure in SARS-CoV-2 pneumonia patients. This is due to 

interstitial oedema caused by proinflammatory cytokine production, altered lung perfusion, 

surfactant loss, alveolar flooding, and collapse due to increased intrathoracic negative pressure 

required to increase tidal volume. These mechanisms result in the perfusion of large areas of 

parenchyma that are no longer ventilated, leading to significant hypoxemia due to a shunt 

unresponsive to oxygen therapy alone [29]. 

 

 

 



 
 

SARS-CoV-2-related acute respiratory failure management 

During and after the COVID-19 pandemic, numerous studies proposed algorithms for 

effectively managing ventilation and oxygen support in virus-induced ARF. Key questions 

include the clinical characteristics that warrant respiratory support, the most suitable oxygen 

devices for these characteristics, and how to monitor the effectiveness and potential side effects 

of support. A short course of systemic corticosteroids for patients with moderate to severe 

COVID-19 has been shown to reduce the need for escalation of care, improve outcomes, and 

slightly reduce all-cause mortality [30-33]. Sampath Weerakkody et al. [28] analysed two 

randomized controlled trials and 83 observational studies on non-invasive respiratory support 

[NIRS] modalities, including high-flow nasal oxygen, continuous positive airway pressure 

[CPAP], and bilevel positive airway pressure [BiPAP] in COVID-19 patients. Contrary to initial 

WHO guidance, their findings suggest NIRS strategies such as face mask non-invasive 

ventilation or high-flow nasal cannula are safe and reduce the risk of death. These strategies 

also lessen the need for intubation in adults with ARF compared to standard oxygen therapy 

[34]. They proposed a decision-making flowchart for providing respiratory support to COVID-

19-induced hypoxemic respiratory failure. Initially, standard oxygen therapy is recommended. 

If symptoms persist or there’s increased work of breathing, persistent hypoxemia, or worsening 

of the PaO2/FiO2 ratio, SpO2, or ROX index, NIRS should be considered, such as BiPAP in 

the presence of hypercapnia, and CPAP or HFNC in the absence of hypercapnia. The SIMEU 

position paper [29] provides guidelines for NIRS use in respiratory failure secondary to COVID-

19 pneumonia. Oxygen therapy should be initiated when SpO2 is below 94%, using high 

FiO2 if SpO2 is below 90%, and low FiO2 if SpO2 is in the range of 90–93%, except for 

patients with chronic pulmonary disease, where therapy should begin at SpO2 below 90–92%. 

HFNC is recommended before NIV [35]. The SIMEU flow chart suggests the target SpO2 

should be between 94% and 98%. If SpO2 remains below 92% after 15 minutes with a non-

rebreathing mask at 15 L/min or if the P/F ratio is 200-300 mmHg, HFNC should be used, 

starting at 60 L/min and titrating the oxygen mixture to achieve SpO2 > 92%. If there’s no 

improvement after 1-2 hours, CPAP should be used. CPAP should start with a PEEP setting of 

7.5-12.5 cmH2O if SpO2 remains below 94% or severe hypoxemia occurs. NIPPV is preferred 

early over CPAP in cases of COPD, initial signs of muscle exhaustion [36,37], and respiratory 

acidosis. NIPPV settings should include PEEP between 7.5-12 cmH2O, with the inspiratory 

trigger sensitivity maximized, a rise time of 0.15–0.25 seconds, and the expiratory trigger at 

30% of peak flow. Patient-Self Induced Lung Injury [p-SILI] can be monitored using 

oesophageal pressure monitoring [35]. In ARF, the COVID-19 Treatment Guidelines Panel 

recommends HFNC as the first-line therapy over conventional oxygen therapy and NIV. NIV 



 
 

should be used if HFNC fails or cannot be used, with a closely monitored trial [38]. Studies 

suggest HFNC is superior to NIV in therapy duration, intubation rate, and ICU mortality [39-

42]. The Panel recommends a high PEEP strategy for mechanical ventilation with positive air 

pressure, as some patients benefit from high PEEP to prevent alveolar collapse and lung injury, 

while others may experience hemodynamic compromise [43-50]. Another algorithm for NIV 

use considers recommendations and contraindications [51]. Indications for NIV include 

obstructive sleep apnoea, COPD, congestive heart failure, cardiogenic pulmonary oedema, 

hypercapnic respiratory failure, and dyspnoea. HFNC is indicated when PaO2 < 65 or SpO2 

< 90% on supplemental oxygen, RR > 25, and mild ARDS (PaO2/FiO2 < 300 but > 200). 

Contraindications to NIV include cardiac or respiratory arrest, encephalopathy, severe 

hypoxemia on admission (PaO2/FiO2 < 150), pneumothorax, pleural effusion, pulmonary 

embolism, gastrointestinal issues, aspiration risk, recent facial trauma or surgery, 

hemodynamic instability, multi-organ dysfunction, high SOFA score, and poorly controlled 

respiratory secretions. If a patient is a candidate for treatment, NIV, CPAP, or HFNC therapy 

should begin with constant monitoring for three hours, including hourly lab assessments, ABG, 

PaO2/FiO2 (target > 300), subjective improvement or worsening of dyspnoea, heart and 

respiratory rate trends, pulse oximetry, FiO2 requirements, and tidal volume measurement for 

CPAP or NIV. Failure parameters include primary (PaO2/FiO2 < 150 or inability to improve 

after 1 hour of NIV, worsening dyspnoea, tachypnoea > 25, failure to maintain PaO2 of 60 on 

FiO2 0.6, SpO2/FiO2 < 196, tidal volume > 9 ml/kg predicted body weight) and secondary 

(SAPS II > 35, APACHE II > 17, rising SOFA score, high peak pressure requirement, worsening 

bronchorrhea, mask intolerance). If symptoms worsen, invasive mechanical ventilation is 

considered. If there is no improvement and the patient is on HFNC, switch to NIV/CPAP. A 

proning trial may be attempted if the patient is on NIV/CPAP. If symptoms improve, continue 

NIRS with frequent reassessments. Based on prior experiences [37-40,42], and the algorithm 

proposed by Scala [50] for hospitalized ARF patients with COVID-19, a pathway for non-

invasive assessment and ventilatory support can be proposed (Fig. 1). The criterion for starting 

conventional oxygen therapy (COT, with nasal cannulas, Venturi mask, or non-rebreathing 

mask) is SpO2 < 92%. The choice of support depends on the FiO2, and flow required to 

achieve a target SpO2 between 94% and 98% and a respiratory rate < 30 bpm. The patient 

should be re-evaluated within 4 hours during COT. If SpO2 < 93% and PaO2/FiO2 < 300 

mmHg, trials can begin with HFNC at 30-60 L/min with a target SpO2 > 93%. If PaO2/FiO2 

< 200 mmHg and/or RR > 30 bpm, CPAP therapy with a PEEP of at least 10 cmH2O is 

considered (to avoid S-ILI or barotrauma). In cases of PaO2/FiO2 < 100 mmHg and/or RR > 

30 bpm with respiratory distress, NIV must be started with a PEEP of 12-16 cmH2O and a PS 



 
 

to ensure a Vt of 4-6 ml/kg/PBW [50]. Reassessments during NIRS depend on the support used; 

HFNC patients should be re-evaluated every 2, 6, and 12 hours, while CPAP and NIV patients 

should be reassessed every hour. If SpO2 worsens or PaCO2 increases in NIRS, or if respiratory 

arrest, hemodynamic instability, or intolerance to CPAP/NIV occurs, invasive ventilation via 

endotracheal intubation (ETI) is indicated. The various aforementioned algorithms have been 

compared and summarized in Supplementary Table 1. It is also essential to acknowledge the 

studies by Prediletto and Marra [52,53] which contributes to the ongoing discussion 

concerning the clinical relevance of the standardized P/F (stP/F) ratio and the SpO₂/FiO₂ (S/F) 

ratio. Where they defined that, the PaO₂/FiO₂ ratio (P/F) does not account for compensatory 

respiratory efforts such as tachypnoea and hyperpnea, which often result in hypocapnia. 

Standard PaO₂, which adjusts PaO₂ for the individual's PaCO₂, more accurately reflects the 

underlying pathophysiology of hypoxemic ARF. In the first study they highlighted, in a cohort 

of 349 patients hospitalized with COVID-19-related ARF, STP/F demonstrated superior 

predictive accuracy for mortality compared to P/F [52]. These findings suggest that STP/F may 

provide a more physiologically relevant measure for assessing ARF severity in COVID-19 

patients [53]. The second one [50], aimed to evaluate the correlation between the non-invasive 

SpO₂/FiO₂ (S/F) ratio and the PaO₂/FiO₂ (P/F) ratio, as well as their associations with 

radiological and laboratory severity markers. They find support of the utility of the S/F ratio as 

a reliable surrogate for P/F in clinical assessment, offering a non-invasive and accessible 

marker that also reflects overall disease severity [53]. 

 

Non-invasive ventilation usage in COVID-19 acute respiratory failure 

During the COVID-19 pandemic, NIV has been utilized as both a first-line and rescue therapy 

for patients with varying degrees of disease severity [53-57]. It improves oxygenation, reduce 

dyspnoea, inspiratory effort, and work of breathing [58], and may lower endotracheal 

intubation and ICU mortality rates [58,59]. However, if NIV fails, it can delay intubation and 

worsen clinical outcomes. Success rates have varied, likely due to the different interfaces, 

settings, and protocols. Wang et al. reported an 11% failure rate for mild-to-moderate patients 

using NIV as first-line therapy [60], while failure in severe patients can reach up to 80% [61]. 

Observational studies have found failure rates between 40% and 50% [56,58,59]. Non-

invasive procedures, such as NIV or CPAP with escalation to NIV, may be attempted for 

hypoxemic respiratory insufficiency, an inadequate response to oxygen therapy, or mild ARDS 

[60]. Arabi et al. [41,61] concluded that NIV can be effective for patients in early stages and 

milder forms of acute hypoxemic respiratory failure, but warned that without early 

improvement, NIV may merely delay intubation. Current literature supports this, as COVID-



 
 

19 patients can progress from initial symptoms to ARDS and intubation, necessitating timely 

ventilation decisions [41,61]. NIV’s variable success is likely due to heterogeneous interfaces, 

settings, and protocols (Supplementary Table 2). 

An Emergency Department in Northern Italy proposed a standardized procedure for 

monitoring patients on NIV, suggesting assessment of arterial blood gases, tidal volume, 

respiratory rate, accessory respiratory muscle use, hemodynamic, mental status, gastric 

distension and aspiration risk, organ failure, and patient compliance [54,62-65]. Predictive 

markers for NIV failure after two hours include lack of improvement in blood gases, lower 

bicarbonate levels, lower PaCO₂ [in hypoxemic ARF], higher lactate, and inability to maintain 

a PaO₂ of 60 mmHg on FiO₂ of 0 [62-66]. 

A significant concern is “silent hypoxemia,” where marked arterial hypoxemia in COVID-19 

patients may not present with obvious symptoms, potentially leading clinicians to 

underestimate severity [67]. SpO₂, used to measure oxygen saturation, should be interpreted 

cautiously; hypoxemia-driven tachypnoea and hyperpnea can cause respiratory alkalosis, 

shifting the oxyhaemoglobin dissociation curve to the left and yielding high SpO₂ despite low 

PaO₂ [67]. Secondary factors like diarrhoea, dehydration, and hypoalbuminemia can also 

produce falsely high SpO₂ and low respiratory rates. Therefore, respiratory support decisions 

should be based on the PaO₂/FiO₂ ratio rather than SpO₂ alone [67]. 

Factors associated with increased NIV mortality include moderate to severe ARDS, a 

PaO₂/FiO₂ ratio below 150 mmHg, high tidal volumes [>9.2 or 9.5 mL/kg], bilateral 

pneumonia, and progressive worsening on chest CT scans [68,69]. This is why many studies 

on COVID-19–related ARF target tidal volumes ranging from 5.8 to 8 mL/kg PBW [70-81]. 

Regarding PEEP, studies report values between 10 and 15 mmHg [59,64]. In the absence of 

randomized trial evidence, “higher” PEEP is recommended per the ARDS Network’s higher 

PEEP/lower FiO₂ table [43,65,81-89], although variation reflects uncertainty in PEEP titration. 

A recent review on COVID-19 pneumonia patients treated with NIV found that both CPAP and 

NIV were commonly used but linked to higher mortality rates (Supplementary Table 2). 

However, studies such as Faraone et al. [56] reported NIV to be effective for treating acute 

hypoxemic respiratory failure in 50 COVID-19 patients, with a 64% success rate. Similarly, 

Menzella et al. [90] found NIV successful in 48.1% of 79 COVID-19–related AHRF cases, with 

25.3% requiring invasive ventilation and 57% of those patients discharged alive. The authors 

concluded that NIV can be safely applied and may prevent the need for invasive ventilation in 

about 50% of cases.  



 
 

Recent evidence has highlighted the clinical benefit of the prone position as an adjunctive 

strategy during non-invasive respiratory support (NIRS), including both high-flow nasal 

cannula (HFNC) and non-invasive ventilation (NIV), in patients with acute respiratory failure 

(ARF) due to SARS-CoV-2 infection. Traditionally reserved for intubated patients with severe 

acute respiratory distress syndrome (ARDS), proning has been increasingly applied to awake, 

non-intubated patients during the COVID-19 pandemic, showing promising results in 

improving oxygenation and potentially delaying or preventing the need for intubation [89]. 

Furthermore, a novel variation of the prone position—termed the "Rodin's Thinker" position—

has been proposed and described in the American Journal of Respiratory and Critical Care 

Medicine (AJRCCM) [91]. This modified position adapts the classic prone posture to enhance 

patient comfort while preserving the physiological benefits of dorsal lung recruitment. These 

developments emphasize the growing relevance of positioning strategies within non-invasive 

respiratory management protocols and suggest further investigation into their standardized 

application and outcomes. 

 

Discussion and Conclusions 

NIRS, in select COVID-19 patients, should be considered. When utilized with vigilance and 

under appropriate conditions, NIRS is an acceptable alternative to early IMV in the 

management of mild to moderate acute hypoxemic respiratory failure secondary to COVID-

19. Although available evidence remains inconclusive regarding the impact of NIV on 

outcomes for patients with severe hypoxemia due to SARS-CoV-2, based on pre-COVID-19 

experiences and limited studies in SARS-CoV-2 patients, nearly 50% of patients might avoid 

intubation with non-invasive respiratory treatment alone. Further large-scale trials are needed 

to identify which COVID-19 patients benefit most from non-invasive respiratory management 

with minimal risk. These considerations could potentially be extended to viral-induced lung 

injury processes in the context of similar pathophysiological damage. However, further studies 

are needed to corroborate the findings observed in SARS-CoV-2-related infection and disease, 

in comparison with acute respiratory failure (ARF) caused by other respiratory viruses. In the 

meantime, there is no reason not to use NIV when conventional oxygen strategies fail, provided 

there are no immediate indications for intubation and the patient is closely monitored to 

prevent delayed intubation and virus transmission. Appropriate use of NIV has the potential to 

successfully reduce the need for invasive mechanical ventilation and ICU burden. 
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Figure 1. Proposed pathaway NIRS in COVID-19-reletad ARF. NC, nasal cannula; VM, 
Venturi mask; NRM, non-rebreather mask; HFNC, high-low-nasal-cannula; RR, respiratory 
rate; BPM, breaths per minute; COT, continuous oxygen therapy; PS, pression support; ETI, 
emergent endotracheal intubation; WOB, work of breathing. 
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