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Abstract

Long-term noninvasive ventilation modalities for the pediatric
population have undergone a continuous evolution. Hybrid nonin-
vasive ventilation modalities have been recently introduced in clin-
ical practice. Combining the advantages of conventional ventilation,
hybrid modes use algorithms that automatically adjust the ventila-
tor’s settings to achieve a predefined ventilation target. Most of the
recommendations on the use and settings of hybrid noninvasive
ventilation modalities in children are derived from adult experience.
Therefore, there is a lack of evidence on its implementation in pedi-
atric chronic respiratory diseases. This scoping review aims to map
the existing information regarding the use of hybrid ventilation
modalities in the pediatric population and identify knowledge or
research gaps. We performed a literature search using MEDLINE
and PubMed following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping
Reviews. We included 13 studies (10 studies on average volume-
assured pressure-support ventilation, 2 studies on intelligent vol-
ume-assured pressure-support ventilation, and 1 study on adaptive
servoventilation). The use of new noninvasive ventilation modes in
the pediatric population has been applied for the treatment of neu-
romuscular and hypoventilation syndromes as an alternative thera-
peutic option in the case of the failure of conventional noninvasive
ventilation. Their widespread use has been hampered by the limited
evidence available. Longitudinal studies on a larger number of
patients are needed to confirm their effectiveness and evaluate their
long-term clinical and functional outcomes.

Introduction

Long-term noninvasive ventilation (NIV) use in the pediatric
population has increased over the last few decades, as a result of
better clinical outcomes among children with chronic respiratory
medical conditions. Improvements in NIV technology and patient-
tailored interfaces have offered significant clinical advantages [1].

Hybrid NIV modalities have been recently introduced in clini-
cal practice. Combining the advantages of conventional ventilation,
hybrid modes use algorithms that automatically adjust the ventila-
tor’s settings to achieve a predefined ventilation target. This offers
several advantages, such as the ability to compensate for tidal vol-
ume changes occurring at different sleep stages or in case of lung
compliance modifications.

The volume-assured pressure support ventilation (AVAPS)
debuted in 1992 with the aim of combining the benefits of conven-
tional volume- and pressure-controlled ventilation [2]. Since then,
other volume-targeted systems have been developed [3], trying to
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ensure the average level of a predetermined tidal volume (Vt) or
alveolar ventilation (Va). The intelligent AVAPS (iVAPS) ventila-
tion is a new hybrid mode (iVAPS®; ResMed Inc., Sydney,
Australia) that relies on automatically targeting Va by adjusting
inspiratory pressure and respiratory rate (RR). The target Va is cal-
culated through an algorithm that subtracts the estimated anatomical
dead space from minute ventilation [4,5]. The adaptive servo-venti-
lation (ASV) is a servo-controlled/pressure-controlled flow-cycled
mode, which allows a variable support during the inspiratory phase,
superimposed on a fixed or automatic level of expiratory positive
airway pressure (EPAP). Its algorithm mirrors the patient breath-by-
breath, continuously calculating a target minute ventilation and
dynamically customizing the pressure support (PS) delivered. It
aims to avoid transient episodes of central hypopnea/apnea after
hyperventilation and associated hypocapnia [6].

Although hybrid modes were initially conceived for invasive
mechanical ventilation [3], they have been applied in adult patients
with chronic respiratory conditions, such as neuromuscular diseases
(NMD), obesity hypoventilation syndrome, and chronic obstructive
pulmonary disease. Most of the recommendations on the use and
settings of hybrid NIV modalities in children are derived from adult
experience. Therefore, there is a lack of evidence on its implemen-
tation in pediatric chronic respiratory diseases.

Moreover, the variety of labels, algorithms, and parameter
setups might be misleading for physicians. This scoping review
aims to map the existing information regarding the use of hybrid
ventilation modalities in the pediatric population and identify
knowledge or research gaps to be further evaluated. An overview of
the hybrid ventilation modes’ function and settings is also given.

Methods

The review was conducted in accordance with the Preferred
Reporting Items for Systematic reviews and Meta-Analyses exten-
sion for Scoping Reviews (PRISMA-ScR) [7].

For this review, we searched MEDLINE and PubMed for pre-
clinical and clinical studies on hybrid NIV modalities used in
infants (<1 year old) and children (<16years old). Our search
included studies published from inception to January 31, 2023. We
excluded articles in languages other than English. We used the fol-
lowing keywords: “Noninvasive ventilation”, “NIV”, “Noninvasive
positive pressure ventilation”, “NIPPV”, “volume-assured pressure-
controlled ventilation”, “Volume targeted pressure controlled venti-
lation”, “average volume-assured pressure-support ventilation”,
“AVAPS”, “intelligent volume-assured pressure support”, “iVAPS”,
“adaptive servoventilation”, “ASV”, “pediatric”, “children” as
exact phrases and a combination of broad subject headings accord-
ing to databases’ syntax.

No limitations were imposed for specific contexts, with the aim
of including both in-hospital and home care settings. Case series,
case reports, reviews, randomized controlled trials, and non-ran-
domized studies (both prospective and retrospective) were included.
Abstracts and conference proceedings were excluded.

Two authors (MP and GM) independently performed the search.
Differences in selections were solved by consensus, with the help of
a third author (CG). Reference lists of the included articles were
screened for other relevant articles or reviews not retrieved by the
database search. None of the studies were excluded from the review
based on quality assessment.

We collected data regarding the type of study, setting, popula-
tion characteristics, ventilator settings, and outcomes (adherence to
therapy). Data were then tabulated for appropriate presentation.
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Meta-analysis was not performed due to limited data, mainly deriv-
ing from case series. Table 1 synthesizes the main characteristics of
new NIV modalities in the children population, with reference to
specific devices. Table 2 summarizes the main settings used in the
studies retrieved. Table 3 gives an overview of the diagnostic cate-
gories, indications for NIV treatment, findings, and limitations of
the reviewed studies.

Results

The initial search identified 220 results. Following screening of
titles and abstracts and after duplicates removal, 22 full-text articles
were evaluated. Among these, we selected and included 13 articles.
The details on the inclusion/exclusion process are provided in the
PRISMA flow diagram (Supplementary Figure 1) [8]. No random-
ized controlled trials nor non-randomized studies were retrieved.
We found 3 case series [9-11], and 10 case reports [12-21], for a
total of 50 patients.

Among the retrieved studies, 10 studies analyzed AVAPS appli-
cation [9,12-20], 2 iVAPS [10,11], and only 1 ASV [21]. A description
of all the included studies is provided with details in Tables 2 and 3.

The largest case series of pediatric AVAPS use published to date
is a retrospective single-center study [9], which compares AVAPS to
conventional bilevel support in improving hypercarbia in a cohort
of 19 pediatric patients (11 boys; median age 10.5 years, range 1 to
20 years) with nocturnal hypoventilation. In these cases, AVAPS
was applied only if hypoventilation was not controlled by conven-
tional bilevel ventilation. Included patients were affected by NMD
(n=9), obstructive hypoventilation (n=5), parenchymal lung dis-
eases (n=4), and congenital central hypoventilation syndrome
(CCHS) (n=2). The AVAPS modality was used in ST mode in 16
patients and PC mode in the remaining 3 patients. Patients included
in this study demonstrated significant improvement in peak transcu-
taneous carbon dioxide measurement (TcCO,) (63£14 mmHg vs.
5749 mmHg, p=0.009), mean TcCO, (55+10 mmHg vs. 49+7
mmHg, p=0.001), total sleep time with TcCO, >50 mmHg (54+2
mmHg vs. 471 mmHg, p=0.02), and mean TcCO, in REM sleep
(5442 mmHg vs. 47+1 mmHg, p=0.02). Compared to conventional
bilevel ventilation, AVAPS delivered higher Vt (165+100 mL vs.
135+104 mL, p=0.04) using similar pressures. The set mean Vt was
221.8+115.6 mL. The set mean RR was 21+6.4 breaths/min. The
inspiratory positive airway pressure (IPAP) ranged from 11 to 20
mmHg (mean + standard deviation, 16+2 cmH,0), and the EPAP
ranged from 4 to 6 cmH,O (51 cmH-0).

Among the included case reports, three described the potential
reliability of AVAPS as an alternative to conventional NIV in infants
with CCHS [12-14], one in severe bronchopulmonary dysplasia in
an extremely premature infant [15], three in the treatment of
obstructive sleep apnea (OSA) refractory to continuous positive air-
way pressure (CPAP) [16-18], two in hypoventilation conditions
related to pediatric neuromuscular disorders [19,20].

There are only two published studies on the use of iVAPS in the
children population [10,11].

Khayat et al. conducted a retrospective study of 8 CCHS
patients who underwent both a titration polysomnography (PSG)
with standard bilevel ventilation (BiPAP) in ST mode and a consec-
utive follow-up study with iVAPS mode, with the purpose of deter-
mining if iVAPS was more effective at controlling hypercarbia than
conventional BiPAP ventilation [10]. They found a significant dif-
ference between the two BPAP modes in terms of peak non-REM
tcCO, [43.0 (40.0-46.0) mmHg vs. 46.5 (45.0-48.0) mmHg for stan-

dard ST mode; p<0.05].
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In their prospective observational study, Sunkonkit et al. com-
pared the adherence and efficacy of iVAPS vs. standard ST mode in
a cohort of 20 children with NMD, finding a mean average daily
usage and a median daily usage for iVAPS mode and ST mode of
8.4+1.6 vs. 7.242.5 h (p=0.012) and 8.6+1.4 vs. 7.8£2.1 h
(p=0.022), respectively [11]. Unfortunately, the author did not pro-
vide details on ventilator settings.

The ASV modality has only been reported in one case [21],
where its use was associated with correction of a severe mixed-sleep
apnea syndrome (SAS) in an 11-year-old patient (body mass index
19 kg/m?) with a metastatic diencephalon anaplastic ganglioglioma.
The patient developed a severe mixed-SAS with central and
obstructive respiratory events, and nocturnal alveolar hypoventila-
tion. The use of ASV mode resulted in a reduction of apnea episodes
(1 event/hour), the correction of nocturnal hypoventilation, and the
improvement of daytime symptoms.

Discussion

Conventional NIV has been the mainstay treatment for children
with NMD and hypoventilation syndromes, both in acute and
chronic settings. The optimal ventilatory support is usually deter-
mined after a thorough clinical evaluation and polysomnographic
study, in order to reach the optimal target of gas exchanges and air-
way patency. However, many patients need varying respiratory sup-
port through the day, in relation to pulmonary impedance variations
related to body positions, variations in pulmonary mechanics, and
different sleep stages. As an example, minute ventilation in children
with CCHS can vary significantly due to differences in the control
of breathing during REM and non-REM sleep. This often results in
higher pressure settings during the first half of the night, when non-
REM sleep predominates, and subsequent hyperventilation during
the second half of the night when REM sleep is predominant [10].

In addition, conventional NIV modes are not able to auto-titrate
the degree of respiratory support with disease progression, as can be
seen in NMD. These issues may explain the suboptimal adherence
rates to conventional NIV [22], resulting in frequent pulmonary
exacerbations with subsequent hospitalizations, prolonged intensive
care unit stays, and multiple clinic visits. Moreover, unintentional
leaks must be considered as one of the major issues in NIV. Single-
circuit ventilators with calibrated intentional leaks (vented configu-
ration) have demonstrated better compensation for unintentional
leaks [3,23] than non-vented configurations.

Compared to conventional NIV, hybrid modes allow the clini-
cian to set variable PS that self-adjusts to maintain target Vt despite
varying respiratory mechanics, ventilatory control, upper airway
patency, and respiratory muscle recruitment [2].

Despite their theoretical advantages, the use of hybrid NIV
modes in children is uncommon. The inconsistency of pediatric
clinical indications for AVAPS must be related to the small number
of cases reported, which hampers the assessment of its effectiveness
and safety. Neither prospective randomized controlled trials nor
specific guidelines have been issued yet, and the suggested settings
for the pediatric population are derived from the manufacturer’s
indications and previous adult studies.

Hybrid mode function and settings

The working principle of AVAPS is based on the ability to pro-
vide a pre-set target Vt (dependent variable) by automatically
adjusting the IPAP (independent variable) within a pre-set range
(IPAP max - IPAP min), with a backup RR (BURR). These ventila-
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tors cycle between an IPAP and an EPAP, where the peak pressure
(Pmax) is equal to IPAP - EPAP. However, some manufacturers
adopt a different setup, where Pmax is equal to IPAP + EPAP.

Inspiration is initiated in a pressure-controlled flow-cycled
mode (independent variable) that can be forced, in some software,
between a preset minimal (Tmin) and maximal inspiratory (Tmax)
time. A breath-to-breath feedback loop adjustment of the inspiratory
pressure allows the ventilator to reach the pre-set Vt, following a
pre-set or adjustable speed rate, averaging inspiratory pressure over
several breaths, and according to respiratory effort, lung compli-
ance, and resistance. If the delivered Vt is above the pre-set target,
this mechanism is deactivated and the inspiratory pressure does not
change [2,24] (Table 1).

“Overshooting” is one of the main drawbacks of Vt targeting.
This is defined as the inadequate increase in Vt>20% [25-28] relat-
ed to the inability of the ventilator algorithm to promptly respond to
abrupt changes in unintentional leaks or to respiratory impedance
amelioration [25,29,30]. Overshooting may be responsible for
hyperventilation, as both RR and Va are not controlled: hypocarbia
and hyperinflation may decrease the patient’s respiratory effort,
with consequent patient-ventilator asynchrony, periodic breathing,
microarousals [6], and potential gastric distension [25,31].

The EPAP value should be fixed by the operator on a clinical
basis or decided following sleep studies, using polygraphy or PSG.
Alternatively, some ventilators automatically adjust the EPAP
(AutoEPAP) between two pre-set levels (EPAPmin and EPAPmax),
aiming at upper airway patency [32]. Principal characteristics are
shown in Table 1.

iVAPS is a new hybrid mode of NIV (iVAPS®; ResMed Inc.,
Sydney, Australia) which relies on automatically targeting Va by
adjusting inspiratory pressure and RR.

In this setup, the inspiratory pressure is labelled as PS and Pmax
equals IPAP + EPAP. To reach target Va, the inspiratory pressure
(within minimal and maximal PS) is continuously adjusted during
the inspiration phase breath-to-breath, and instead of a fixed backup
rate, the iVAPS intelligent backup rate (iBR) shifts automatically
between two limits. The cycling variable is the percentage of inspi-
ratory flow decay, both for spontaneous or controlled breaths,
forced between a Tmin and Tmax.

The target Va is calculated through an algorithm that subtracts
the estimated anatomical dead space (automatically calculated by
the device using the patient’s height) from minute ventilation [4,5].
The target patient rate, which defines the upper boundary of iBR, is
set to match the patient’s average spontaneous breath rate. During
spontaneous ventilation, the iBR is reduced to 2/3rds of the target
patient rate by the device, giving the opportunity to trigger the ven-
tilator. In case of trigger failure, or when ventilation is below the tar-
get or in the occurrence of apnea episodes, the iBR increases from
its background frequency to the target rate (within 4-5 breaths),
bringing the patient back to the target. A single spontaneous breath
resets the iBR to its background rate until needed [33,34].

In case the Va falls 50% below the target, pressure increases of
0.35 cmH,O per second. Conversely, pressure decreases of 0.5
cmH,O per second occur when the delivered Va overtakes the target
for more than 200%.

The EPAP level can be set at a fixed value or automatically
adjusted within two levels (minimal and maximal) decided by the
operator. The EPAP is chosen on a flow curve analysis. In addition,
iVAPS allows a “learning” ST mode during which the software
computes a target minute ventilation at a given setting, by measur-
ing the patient’s RR and Vt [33,34]. It is necessary to remember that
S or ST modes use a “below EPAP” setup, while iVAPS mode uses
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an “above EPAP” setup. This means that, when switching from the
“S or ST learning mode” to iVAPS, the inspiratory pressure should
be reduced to the same Pmax obtained during the “learning mode”.

The ASV modality is a servo-controlled/pressure-controlled
flow-cycled mode (“above EPAP” setup), which allows a variable
support during the inspiratory phase, superimposed on a fixed or
automatic level of EPAP. Its primary indication was to provide the
hydrostatic benefits of low levels of EPAP while directly suppress-
ing central sleep apnea (CSA) or Cheyne-Stokes respiration, with-
out causing over-ventilation in patients with stable congestive heart
failure. This mode was later applied in OSA patients experiencing
emergent or persistent CSA under CPAP use [35,36]. In complex
forms of sleep disorders (CSA mixed |SAS or mixed|SAS) and
complex sleep apneas (complex'SAS) refractory to CPAP [35],
ASV counterbalances the patient’s ventilatory instability, reducing
respiratory-event related arousals, and at the same time stabilizes
minute ventilation and arterial blood gases by modulating the level
of PS and EPAP.

The ASV mode algorithm (based either on target ventilation or
peak flow) mirrors the patient breath-by-breath, continuously calcu-
lating a target minute ventilation and dynamically customizing the
PS delivered. It aims to avoid transient episodes of central hypop-
nea/apnea after hyperventilation and associated hypocapnia [6].

The operator sets a minimum and a maximum value of inspira-
tory pressure. During normal breathing, the device delivers the min-
imum value of support. On a breath-by-breath basis, the peak flow
is captured and monitored over a 3-minute moving window. At
every point within this 3-minute window, an average peak flow is
calculated, and the peak flow target is established around that aver-
age, with respect to the patient’s needs.

In case the patient’s drive is absent, the device will increase the
inspiratory support to a maximum pressure of 20-25 cmH,0, in
order to maintain the target ventilation [37,38]. When the patient
resumes his spontaneous effort, the inspiratory pressure drops back
gradually to the minimum set value. When ventilation exceeds 90%
of the target, the PS stays at the minimum pressure level. BURR can
be manually adjusted in some devices (Table 1).

While the inspiratory support increases in response to the reduc-
tion of minute ventilation, EPAP increases in response to flow lim-
itation/snoring. The EPAP can be set manually or in AUTO mode.
In this last case, two levels of EPAP can be set, the lower being at
least 4 cmH,0. Assessment of “Flow Limitation” is based on the
analysis of flow-shape after single breaths or after a spike-pressure
delivery. If minute ventilation remains above the dynamic target
despite flow limitation/snoring, the ventilator increases EPAP only.
During apneas, PS increases as minute ventilation drops below the
dynamic target. If there is little or no patient ventilation during this
period, the apnea is classified as obstructive. The algorithm detects
obstructive events, as increases in PS do not stabilize minute venti-
lation. Once spontaneous breathing resumes, it increases EPAP in
proportion to the severity of the event, with the aim of preventing
further apneas from occurring.

In addition to the above-mentioned hybrid NIV modes, the
intermittent abdominal pressure ventilation is worth a special men-
tion. This is an unconventional noninvasive modality consisting of
a portable ventilator and a corset equipped with an internal bladder
as an interface. The cyclic inflation and deflation of the bladder
guarantees the passive movement of the diaphragm, thus ensuring
the expiratory phase (the diaphragm is dislocated upwards to expel
air up to the functional residual capacity) and the inspiratory phase
(the abdominal viscera and the diaphragm are lowered by gravity,
and inspiration occurs due to the elastic recoil of the lungs and
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chest). This modality might be a valid alternative both to daytime
and nighttime conventional NIV in patients affected by NMD with
advanced respiratory failure, avoiding early tracheostomy and acute
respiratory exacerbations [39,40].

Pediatric settings

There are no specific pediatric indications for hybrid NIV use
and setting, and most of the recommendations derive from manu-
facturers’ indications and previous experience with adult patients.
Ventilator settings need to be independently titrated on an individual
basis, according to the patient’s underlying disease. IPAP and
BURR should be titrated to provide an appropriate ventilatory sup-
port, while EPAP needs to be adjusted to stabilize the upper airway
and/or increase the functional residual capacity.

The target Vt in the retrieved studies varies between 6.5 and 10
mL/kg of body weight (Table 2), in accordance with common indi-
cations to ensure a target Vt of at least 6-10 mL/kg [41,42]. The
ideal body weight (IBW) is usually considered for the calculation of
the target Vt, deriving from studies on obese adult patients. In the
case of pediatrics, there is no consensus on IBW calculation [18],
and hybrid NIV is used regardless of children’s obesity.

As a consequence, the pre-set maximal inspiratory pressure
should be decided to prevent the ventilator from not attaining the
target Vt (e.g., unintentional leaks, reduced inspiratory effort, or
modifications of respiratory impedance) [41], with higher values in
restrictive lung conditions.

As suggested by the manufacturer, iVAPS and ASV can be used
in children weighing more than 30 kg. In the case of iVAPS, where
the ventilation target is Va (defined as the minute ventilation minus
anatomical dead-space ventilation), this has been estimated consid-
ering the anatomical dead space approximated by the patient’s
height [120 X (height/175)] [10]. Due to age cut-offs, iVAPS and
ASV have limited application among older patients (10.6 median
age and 14.1 mean age for iVAPS, 11 years for ASV in retrieved
studies). No age limitation has been identified with AVAPS use,
which has also been applied in premature infants [15].

Conclusions

The use of new NIV modes (AVAPS, iVAPS, ASV) in the pedi-
atric population has been applied for the treatment of CCHS, NMD,
severe obesity complicated by OSA, rapid-onset obesity with hypo-
thalamic dysfunction, hypoventilation and autonomic dysregula-
tion, bronchopulmonary dysplasia, and CSA. Although limited
availability of preliminary data, these new modes should be consid-
ered as an alternative therapeutic option in the case of conventional
NIV failure. The quality of available evidence is low, and longitudi-
nal studies on a larger number of patients are needed to confirm
their effectiveness and to evaluate their long-term clinical and func-
tional outcomes.
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