Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. The Early Access service lets users access peer-reviewed articles well before print / regular issue publication, significantly reducing the time it takes for critical findings to reach the research community. These articles are searchable and citable by their DOI (Digital Object Identifier).

The Monaldi Archives for Chest Disease is, therefore, e-publishing PDF files of an early version of manuscripts that have undergone a regular peer review and have been accepted for publication, but have not been through the typesetting, pagination and proofreading processes, which may lead to differences between this version and the final one. The final version of the manuscript will then appear in a regular issue of the journal.

E-publishing of this PDF file has been approved by the authors.

All legal disclaimers applicable to the journal apply to this production process as well.

Monaldi Arch Chest Dis 2024 [Online ahead of print]

To cite this Article:

Note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries should be directed to the corresponding author for the article.

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
New noninvasive modalities in long-term pediatric ventilation: a scoping review

Martino Pavone,1 Giovanni Misseri,2 Mariachiara Ippolito,3 Cesare Gregoretti,2,3 Renato Cutrera1

1Pediatric Pulmonology and Respiratory Intermediate Care Unit, Sleep and Long-Term Ventilation Unit, Academic Department of Pediatrics, Pediatric Hospital “Bambino Gesù” Research Institute, Rome; 2Fondazione Istituto “G. Giglio”, Cefalù, Palermo; 3Department of Surgical, Oncological and Oral Science, University of Palermo, Italy

Correspondence: Giovanni Misseri, Fondazione Istituto “G. Giglio” Cefalù, Via Pisciotto, Contrada Pietrapollastra – 90015 Cefalù, Palermo, Italy.
Tel.: +39 0921 920135.
E-mail: giovannimisseri1987@gmail.com

Contributions: MP, conceptualization, methodology, investigation, data curation, writing - original draft; GM, methodology, investigation, data curation, writing - original draft, writing - review and editing; MI, investigation, data curation, writing – review and editing; CG, conceptualization, investigation, data curation; RC, conceptualization, writing - review and editing, supervision. All the authors approved the final version of the manuscript and agreed to be personally accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Conflict of interest: GM and CG declare a patent in association with the University of Palermo - Italy (No. 102019000020532 Italian Ministry of Economic Development) not related to the content of this manuscript. CG received fees for lectures by Philips and received payments by Philips for consultancies in the developing process of the EVO Ventilator and fees for lectures or consultancies from Resmed, Vivisol and Air Liquide not related to the present work. All the other authors declare no conflict of interest.

Ethics approval and consent to participate: not applicable.

Patient consent for publication: not applicable.

Funding: none.
Availability of data and materials: data and materials are available from the corresponding author.

Abstract
Long-term noninvasive ventilation modalities for the pediatric population have undergone a continuous evolution. Hybrid noninvasive ventilation modalities have been recently introduced in clinical practice. Combining the advantages of conventional ventilation, hybrid modes use algorithms that automatically adjust the ventilator’s settings to achieve a predefined ventilation target. Most of the recommendations on the use and settings of hybrid noninvasive ventilation modalities in children are derived from adult experience. Therefore, there is a lack of evidence on its implementation in pediatric chronic respiratory diseases. This scoping review aims to map the existing information regarding the use of hybrid ventilation modalities in the pediatric population and identify knowledge or research gaps. We performed a literature search using MEDLINE and Pubmed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews. We included 13 studies (ten studies on average volume-assured pressure-support ventilation; two studies on intelligent volume-assured pressure-support ventilation; and one study on adaptive servoventilation). The use of new noninvasive ventilation modes in the pediatric population has been applied for the treatment of neuromuscular and hypoventilation syndromes as an alternative therapeutic option in the case of the failure of conventional noninvasive ventilation. Their widespread use has been hampered by the limited evidence available. Longitudinal studies on a larger number of patients are needed to confirm their effectiveness and evaluate their long-term clinical and functional outcomes.

Key words: pediatric noninvasive ventilation, AVAPS, iVAPS, ASV.

Introduction
Long-term noninvasive ventilation (NIV) use in the pediatric population has increased over the last few decades, as a result of better clinical outcomes among children with chronic respiratory medical conditions. Improvements in NIV technology and patient-tailored interfaces [1] have offered significant clinical advantages. Hybrid NIV modalities have been recently introduced in clinical practice. Combining the advantages of conventional ventilation, hybrid modes use algorithms which automatically
adjust ventilator’s settings to achieve a predefined ventilation target. This offers several advantages, such as the ability to compensate for tidal volume changes occurring at different sleep stages or in case of lung compliance modifications.

The Volume-Assured Pressure Support ventilation (AVAPS) debuted in 1992 with the aim of combining the benefits of conventional volume- and pressure- controlled ventilation [2]. Since then, other volume-targeted systems have been developed [3], trying to ensure the average level of a predetermined tidal volume (Vt) or alveolar ventilation (Va). The Intelligent Volume-Assured Pressure Support (iVAPS) ventilation is a new hybrid mode (iVAPS®; ResMed Inc., Sydney, Australia) which relies on automatically targeting Va by adjusting inspiratory pressure and respiratory rate. The target Va is calculated through an algorithm that subtracts the estimated anatomical dead space from minute ventilation [4,5]. The Adaptive Servo-ventilation (ASV) is a servo-controlled/pressure-controlled flow-cycled mode, which allows a variable support during the inspiratory phase, superimposed on a fixed or automatic level of expiratory positive airway pressure (EPAP). Its algorithm mirrors the patient breath-by-breath, continuously calculating a target minute ventilation and dynamically customizing the pressure support delivered. Its aim is to avoid transient episodes of central hypopnea/apnea after hyperventilation and associated hypocapnia [6].

Although hybrid modes were initially conceived for invasive mechanical ventilation [3], they have been applied in adult patients with chronic respiratory conditions, such as neuromuscular diseases (NMD), obesity hypoventilation syndrome (OHS) and chronic obstructive pulmonary disease (COPD). Most of the recommendations on the use and settings of hybrid NIV modalities in children are derived from adult experience. Therefore, there is a lack of evidence on its implementation in pediatric chronic respiratory diseases.

Moreover, the variety of labels, algorithms and parameters set-up might be misleading for physicians. This scoping review aim is to map the existing information regarding the use of hybrid ventilation modalities in the pediatric population and identify knowledge or research gaps to be further evaluated. An overview of hybrid ventilation modes function and settings is also given.

Methods

The review was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) [7].

For the purpose of this review, we searched MEDLINE and Pubmed for pre-clinical and clinical studies on hybrid noninvasive ventilation modalities use in infants (1 year old) and children (16 years old). Our search included studies published from inception till 31st January 2023. We excluded articles in languages other than English. We used the following keywords:

No limitations were imposed for specific contexts, with the aim of including both in-hospital and homecare settings. Case series, case reports, reviews, randomized controlled trials and non-randomized studies (both prospective and retrospective) were included. Abstracts and conference proceedings were excluded.

Two authors (M.P. and G.M.) independently performed the search. Differences in selections were solved by consensus, with the help of a third author (C.G.). Reference lists of the included articles were screened for other relevant articles or reviews not retrieved by the database search. None of the studies were excluded from the review based on quality assessment.

We collected data regarding the type of the study, setting, population characteristics, ventilator settings, outcomes (adherence to therapy). Data were, then, tabulated for appropriate presentation. Metanalysis was not performed due to limited data mainly deriving from case series. Table 1 synthetizes the main characteristics of new NIV modalities in the children population, with reference to specific devices. Table 2 summarizes the main settings used in the studies retrieved. Table 3 gives an overview of the diagnostic categories, indications for NIV treatment, findings and limitations of the reviewed studies.

Results

The initial search identified 220 results. Following screening of title and abstracts and after duplicates removal, 22 full text articles were evaluated. Among these, we selected and included 13 articles. The details on the inclusion/exclusion process are provided in the PRISMA flow diagram (Supplementary Figure 1) [8]. No randomized controlled trials nor non-randomized studies were retrieved. We found 3 case series [9-11] and 10 case reports [12-21], for a total of 50 patients.

Among the retrieved studies, 10 studies analyzed AVAPS application [9, 12-20], 2 iVAPS [10,11] and only 1 ASV [21]. A description of all the included studies is provided with details in Table 2 and Table 3.

The largest case series of pediatric AVAPS use published to date is a retrospective single-center study [9], which compares AVAPS to conventional bilevel support in improving hypercarbia in a cohort of 19 pediatric patients (11 boys; median age 10.5 years, range 1 to 20 years) with
nocturnal hypoventilation. In these cases, AVAPS was applied only if hypoventilation was not controlled by conventional bilevel ventilation. Included patients were affected by neuromuscular diseases (n = 9), obstructive hypoventilation (n = 5), parenchymal lung diseases (n = 4), CCHS (n = 2). The AVAPS modality was used in ST mode in 16 patients and PC mode in the remaining 3 patients. Patients included in this study demonstrated significant improvement in peak TcCO₂ (transcutaneous carbon dioxide measurement; 63 ± 14 mmHg vs 57 ± 9 mmHg, P = 0.009), mean TcCO₂ (55 ± 10 mmHg vs 49 ± 7 mmHg, P = 0.001), total sleep time with TcCO₂ > 50 mmHg (54 ± 2 mmHg vs 47 ± 1 mmHg, P = 0.02), and mean TcCO₂ in REM sleep (54 ± 2 mmHg vs 47 ± 1 mmHg, P = 0.02). Compared to conventional bilevel ventilation, AVAPS delivered higher tidal volumes (165 ± 100 mL vs 135 ± 104 mL, P = 0.04) using similar pressures. The set mean tidal volume was 221.8 ± 115.6 mL. The set mean RR was 21 ± 6.4 breaths/min. The IPAP ranged from 11 to 20 mmHg (mean ± SD, 16 ± 2 cmH₂O), the EPAP ranged from 4 to 6 cmH₂O (5 ± 1 cmH₂O).

Among the included case reports, 3 described the potential reliability of AVAPS as an alternative to conventional NIV in infants with congenital central hypoventilation syndrome (CCHS) [12-14], 1 in severe bronchopulmonary dysplasia (BPD) [15] in an extremely premature infant, 3 in the treatment of obstructive sleep apnea (OSA) refractory to continuous positive airway pressure (CPAP) [16-18], 2 in hypoventilation conditions related to pediatric neuromuscular disorders [19,20].

There are only two published studies on the use of iVAPS in the children population [10,11]. Khayat et al [10] conducted a retrospective study of 8 CCHS patients who underwent both a titration PSG with standard bilevel ventilation (BiPAP) in ST mode and a consecutive follow-up study with iVAPS mode, with the purpose to determine if iVAPS was more effective at controlling hypercarbia than conventional BiPAP ventilation. They found a significant difference between the two BPAP modes in terms of peak NREM tCO₂ [43.0 (40.0 – 46.0) mmHg versus 46.5 (45.0 – 48.0) mmHg for standard ST mode; p value <.05].

In their prospective observational study, Sunkonkit et al [11] compared the adherence and efficacy of iVAPS vs standard ST mode in a cohort of 20 children with neuromuscular diseases, finding a mean average daily usage and a median daily usage for iVAPS mode and ST mode of 8.4 ± 1.6 versus 7.2 ± 2.5 h (p = 0.012) and 8.6 ± 1.4 versus 7.8 ± 2.1 h (p = 0.022), respectively. Unfortunately, the author did not provided details on ventilator settings.

The ASV modality has only been reported in one case [21], where its use was associated with correction of a severe mixed-SAS in a 11-year-old patient (BMI 19 kg/m²) with a metastatic diencephalon anaplastic ganglioglioma. The patient developed a severe mixed-SAS with central and obstructive respiratory events, and nocturnal alveolar hypoventilation. Use of ASV
mode resulted in reduction of apnea episodes (1 event/hour), the correction of nocturnal hypoventilation and improvement of daytime symptoms.

Discussion

Conventional NIV has been the mainstay treatment for children with neuromuscular disease and hypoventilation syndromes, both in acute and chronic settings. The optimal ventilatory support is usually determined after a thorough clinical evaluation and polysomnographic study, in order to reach the optimal target of gas exchanges and airway patency. However, many patients need varying respiratory support through the day, in relation to pulmonary impedance variations related to body positions, variations on pulmonary mechanics and different sleep stages. As an example, minute ventilation in children with CCHS can vary significantly due to differences in the control of breathing during rapid eye movement (REM) and non-REM (NREM) sleep. This often results in higher pressure settings during the first half of the night, when NREM sleep predominates, and subsequent hyperventilation during the second half of the night when REM sleep is predominant [10].

In addition, conventional NIV modes are not able to auto-titrate the degree of respiratory support with disease progression, as can be seen in neuromuscular disease. These issues may explain the suboptimal adherence rates to conventional NIV [22], resulting in frequent pulmonary exacerbations with subsequent hospitalizations, prolonged intensive care units stays and multiple clinic visits. Moreover, unintentional leaks must be considered as one of the major issues in NIV. Single-circuit ventilators with calibrated intentional leaks (vented configuration) have demonstrated to better compensate for unintentional leaks [3,23] than non-vented configurations.

Compared to conventional NIV, hybrid modes allow the clinician to set variable pressure support that self-adjusts to maintain target tidal volume despite varying respiratory mechanics, ventilatory control, upper airway patency, and respiratory muscle recruitment [2].

Despite their theoretical advantages, the use of hybrid NIV modes in children is uncommon. The inconsistency of pediatric clinical indications for AVAPS must be related to the small number of cases reported, which hamper the assessment of its effectiveness and safety. Neither prospective randomized controlled trials nor specific guidelines have been issued yet, and the suggested settings for the pediatric population are derived from the manufacturer indications and previous adult studies.

Hybrid modes function and settings

The working principle of AVAPS is based on the ability to provide a pre-set target Vt (dependent variable) by automatically adjusting the inspiratory positive airway pressure (IPAP,
independent variable) within a pre-set range (IPAP max – IPAP min), with a backup respiratory rate (BURR). These ventilators cycle between an IPAP and an expiratory positive airway pressure (EPAP), where the peak pressure (Pmax) is equal to IPAP - EPAP. However, some manufacturers adopt a different set up, where Pmax is equal to IPAP + EPAP. Inspiration is initiated in a pressure-controlled flow-cycled mode (independent variable) that can be forced, in some software, between a preset minimal (Tmin) and maximal inspiratory (Tmax) time. A breath-to-breath feedback loop adjustment of the inspiratory pressure allows the ventilator to reach the pre-set tidal volume, following a pre-set or adjustable speed rate, averaging inspiratory pressure over several breaths and according to respiratory effort, lung compliance and resistance. If the delivered Vt is above the pre-set target, this mechanism is deactivated and the inspiratory pressure does not change [2,24] (see Table 1).

“Overshooting” is one of the main drawbacks of Vt targeting. This is defined as the inadequate increase in Vt >20% [25-28] related to the inability of the ventilator algorithm to promptly respond to abrupt changes in unintentional leaks or to respiratory impedance amelioration [25,29,30]. Overshooting may be responsible for hyperventilation, as both respiratory rate (RR) and alveolar ventilation (Va) are not controlled: hypocarbia and hyperinflation may decrease patient’s respiratory effort, with consequent patient-ventilator asynchrony, periodic breathing, microarousals [6] and potential gastric distension [25,31].

The EPAP value should be fixed by the operator on a clinical basis or decided following sleep studies, using polygraphy (PG) or polysomnography (PSG). Alternatively, some ventilators automatically adjust the EPAP (AutoEPAP) between two pre-set levels (EPAPmin and EPAPmax), aiming at upper airway patency [32]. Principal characteristics are shown on Table 1.

iVAPS is a new hybrid mode of NIV (iVAPS®; ResMed Inc., Sydney, Australia) which relies on automatically target alveolar ventilation (Va) by adjusting inspiratory pressure and respiratory rate.

In this set up, the inspiratory pressure is labelled as pressure support (PS) and Pmax equals IPAP + EPAP. To reach target Va, the inspiratory pressure (within minimal and maximal PS) is continuously adjusted during the inspiration phase breath-to-breath, and instead of a fixed backup rate, iVAPS intelligent backup rate (iBR) shifts automatically between two limits. The cycling variable is the percentage of inspiratory flow decay, both for spontaneous or controlled breaths, forced between a Tmin and Tmax.

The target Va is calculated through an algorithm that subtracts the estimated anatomical dead space (automatically calculated by the device using patient’s height) from minute ventilation [4,5]. The target patient rate, which defines the upper boundary of iBR, is set to match the patient’s average spontaneous breath rate. During spontaneous ventilation, the iBR is reduced
at 2/3rds of the target patient rate by the device, giving the opportunity to trigger the ventilator. In case of trigger failure, or when ventilation is below the target or in occurrence of apnea episodes, the iBR increases from its background frequency to the target rate (within 4-5 breaths), bringing the patient back to the target. A single spontaneous breath resets the iBR to its background rate until needed [33,34]. In case the Va falls 50% below the target, pressure increases of 0.35 cmH₂O per second. Conversely, pressure decreases of 0.5 cmH₂O per second when the delivered Va overtakes the target for more than 200%.

The EPAP level can be set at a fixed value or automatically adjusted within two levels (minimal and maximal) decided by the operator. The EPAP is chosen on a flow curve analysis. In addition, iVAPS allows a “learning” ST mode during which the software computes a target minute ventilation [33,34] at a given setting, by measuring the patient’s respiratory rate and Vt. It is necessary to remember that S or ST modes use a “below EPAP” setup, while iVAPS mode uses an “above EPAP” setup. This means that, when switching from the “S or ST learning mode” to iVAPS, the inspiratory pressure should be reduced to the same peak pressure obtained during the “learning mode”.

The ASV modality is a servo-controlled/pressure-controlled flow-cycled mode (“above EPAP” setup), which allows a variable support during the inspiratory phase, superimposed on a fixed or automatic level of EPAP. Its primary indication was to provide the hydrostatic benefits of low levels of EPAP while directly suppressing central sleep apnea (CSA) or Cheyne-Stokes respiration, without causing over-ventilation in patients with stable congestive heart failure. This mode later was applied in OSA patients experiencing emergent or persistent CSA under CPAP use [35,36]. In complex forms of sleep disorders (CSA mixed-sleep apnea syndrome or mixed-SAS) and complex sleep apneas (Complex-SAS) refractory to CPAP [35], ASV counterbalances patient’s ventilatory instability, reducing respiratory-event related arousals, and at the same time stabilizes minute ventilation and arterial blood gases by modulating the level of pressure support and EPAP.

The ASV mode algorithm (based either on target ventilation or peak flow), mirrors the patient breath-by-breath, continuously calculating a target minute ventilation and dynamically customizing the pressure support delivered. Its aim is to avoid transient episodes of central hypopnea/apnea after hyperventilation and associated hypocapnia [6].

The operator sets a minimum and a maximum value of inspiratory pressure. During normal breathing, the device delivers the minimum value of support. On a breath-by-breath basis, the peak flow is captured and monitored over a 3-minute moving window. At every point within this 3-minute window an average peak flow is calculated, and the peak flow target is established around that average, in respect of patient’s needs.
In case the patient’s drive is absent, the device will increase the inspiratory support to a maximum pressure of 20 - 25 cmH₂O, in order to maintain the target ventilation [37,38]. When the patient resumes his spontaneous effort, the inspiratory pressure drops back gradually to the minimum set value. When ventilation exceeds the 90% of the target, the pressure support stays at the minimum pressure level. A back-up respiratory rate can be manually adjusted in some devices (Table 1).

While the inspiratory support increases in response to the reduction of minute ventilation, EPAP increases in response to flow limitation/snoring. The EPAP can be set manually or in AUTO mode. In this last case, two levels of EPAP can be set, the lower being at least 4 cmH₂O. Assessment of “Flow Limitation” is based on the analysis of flow-shape after single breaths or after a spike-pressure delivery. If minute ventilation remains above the dynamic target despite flow limitation/snoring, the ventilator increases EPAP only. During apneas, pressure support increases as minute ventilation drops below the dynamic target. If there is little or no patient’s ventilation during this period, the apnea is classified as obstructive. The algorithm detects obstructive events, as increases in pressure support do not stabilize minute ventilation. Once spontaneous breathing resumes, it increases EPAP in proportion to the severity of the event, with the aim to prevent further apneas from occurring.

In addition to the above-mentioned hybrid NIV modes, the Intermittent Abdominal Pressure Ventilation (IAPV) is worth a special mention. This is an unconventional noninvasive modality consisting in a portable ventilator and a corset equipped with an internal bladder as an interface. The cyclic inflation and deflation of the bladder guarantees the passive movement of the diaphragm, thus ensuring the expiratory phase (the diaphragm is dislocated upwards to expel air up to the functional residual capacity) and the inspiratory phase (the abdominal viscera and the diaphragm are lowered by gravity, and inspiration occurs due to the elastic recoil of the lungs and chest). This modality might be a valid alternative both to daytime and nighttime conventional NIV in patients affected by NMD with advanced respiratory failure, avoiding early tracheostomy and acute respiratory exacerbations [39,40].

Pediatric settings

There are no specific pediatric indications for hybrid NIV use and setting, and most of the recommendations derive from manufacturers indications and previous experience with adult patients. Ventilator settings need to be independently titrated on an individual basis, according to patient’s underlying disease. IPAP and BURR should be titrated to provide an appropriate ventilatory support, while EPAP needs to be adjusted to stabilize the upper airway and/or increase the functional residual capacity.
The target Vt in the retrieved studies varies between 6.5 and 10 ml/kg of body weight (Table 2), in accordance with common indications to ensure a target Vt of at least 6-10 ml/kg [41,42]. The ideal body weight (IBW) is usually considered for the calculation of the target Vt, deriving from studies on obese adult patients. In the case of pediatrics, there is no consensus on IBW calculation [18] and hybrid NIV is used regardless of children obesity. As a consequence, the pre-set maximal inspiratory pressure should be decided to prevent the ventilator not attaining the target Vt (e.g. unintentional leaks, reduced inspiratory effort or modifications of respiratory impedance) [41], with higher values in restrictive lung conditions. As suggested by the manufacturer, iVAPS and ASV can be used in children weighting more than 30 kg. In the case of iVAPS, where the ventilation target is Va (defined as the minute ventilation minus anatomical dead-space ventilation), this has been estimated considering the anatomical dead space approximated by the patient’s height (120 x (height/175)) [10]. Due to age cut-offs, iVAPS and ASV have limited application among older patients (10.6 median age and 14.1 mean age for iVAPS, 11 years for ASV in retrieved studies). No age limitation has been identified with AVAPS use, which has also been applied in premature infants [15].

Conclusions
The use of new NIV modes (AVAPS, iVAPS, ASV) in the pediatric population has been applied for the treatment of CCHS, NMD, severe obesity complicated by OSA, ROHHAD, bronchopulmonary dysplasia and CSA. Although limited availability of preliminary data, these new modes should be considered as an alternative therapeutic option in the case of conventional NIV failure. The quality of available evidence is low, and longitudinal studies on higher number of patients are needed to confirm their effectiveness and to evaluate their long-term clinical and functional outcomes.

References

Online supplementary material:
Supplementary Figure 1. PRISMA flowchart. Modified from Page et al. (2021).
Table 1. Main characteristics of new long-term noninvasive paediatric ventilation modalities.

<table>
<thead>
<tr>
<th></th>
<th>ASV</th>
<th>AVAPS</th>
<th>iVAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Servo-controlled/pressure-controlled ventilation allowing a variable support during the inspiratory phase according to:</td>
<td>Servo-controlled/pressure-controlled targeting Vt in a flow cycling or time cycling breath (i.e. AVAPS®; Bilevel Synchrony Trilogy EVO, Phillips/Respironics; Vt Smart Eove, Air Liquid; volume-control plus, PB540/560 Medtronic; Volume guaranteed in ST/T mode, Vivo 45LS/63 Breas®, Volume guaranteed in S/ST mode, Prisma 40/50® Weimann)</td>
<td>Servo-controlled/pressure controlled ventilation targeting Va (iVAPS, ResMed)</td>
</tr>
<tr>
<td></td>
<td>o a preset Ve (S9 AutoSet CS PaceWaveTM Resmed®)</td>
<td>o Relative Ve (Somnovent CRTM® Weimann)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Relative Ve (Somnovent CRTM® Weimann)</td>
<td>o Peak Inspiratory flow (System One BiPAP autoSv AdvancedTM Respironics/Philips®)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Peak Inspiratory flow (System One BiPAP autoSv AdvancedTM Respironics/Philips®)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control variable</td>
<td>Minimal and Maximal Inspiratory Pressure*</td>
<td>Minimal and Maximal Inspiratory Pressure*</td>
<td>Minimal and Maximal Inspiratory Pressure**</td>
</tr>
<tr>
<td>Baseline variable</td>
<td>EPAP or Auto-EPAP</td>
<td>EPAP or auto-EPAP</td>
<td>EPAP or auto-EPAP</td>
</tr>
<tr>
<td>Trigger variable</td>
<td>o Flow trigger with active patient</td>
<td>o Flow trigger with active patient</td>
<td>o Flow trigger with active patient</td>
</tr>
<tr>
<td></td>
<td>o Time (BURR) in passive respiration</td>
<td>o Time (BURR) linked to algorithm (i.e. Auto-Trak/Auto-Trak sensitive, Respironics/Philips®)</td>
<td>o Time or flow trigger in passive patient</td>
</tr>
<tr>
<td></td>
<td>Respironics/Philips® BURR: default setting 15/breaths/min + adaptation in a moving window or manually set</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resmed® BURR: default setting 15/breaths/min + adaptation in a moving window, no manually set</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weimann® BURR: default setting: 80% of average breathing rate with highest weight on last breaths (can be manually fixed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycling variable</td>
<td>A percentage of inspiratory flow threshold decay (according to manufacturer’s algorithm).</td>
<td>A percentage of inspiratory flow threshold (according to manufacturer’s algorithm) or a given Inspiratory time. Vt may also be forced, in some ventilators or between a Ti min and Ti max</td>
<td>A percentage of inspiratory flow threshold is always the first cycling factor. Time cycling depends also on a given set Ti min or Ti max.</td>
</tr>
<tr>
<td>Target</td>
<td>Minute or Relative Minute Ventilation-Ve or Peak Inspiratory flow</td>
<td>A minimum average Vt is maintained</td>
<td>Va</td>
</tr>
<tr>
<td>Pressure ramp profile</td>
<td>Not available</td>
<td>Settable</td>
<td>Settable</td>
</tr>
<tr>
<td>Unintentional leak compensation</td>
<td>Good for mild to moderate leaks</td>
<td>Good for mild to moderate leaks</td>
<td>Good for mild to moderate leaks</td>
</tr>
<tr>
<td>Advantages</td>
<td>Guarantees a constant target Ve or a target peak flow</td>
<td>Guarantees a minimal average Vt</td>
<td>Guarantees a minimal average Va</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Problems related to fixed back up rate in some models</td>
<td>o Vt under- or over-estimation</td>
<td>o Va under- or over-estimation</td>
</tr>
<tr>
<td></td>
<td>o Overshooting</td>
<td></td>
<td>o Less likelihood of overshooting</td>
</tr>
<tr>
<td>Used circuits</td>
<td>Intentional leak “vented” circuit</td>
<td>Intentional leak “vented” circuit</td>
<td>Intentional leak “vented” circuit</td>
</tr>
</tbody>
</table>

ASV, adaptive servo-ventilation; AVAPS, average volume assured pressure support; BURR, back-up respiratory rate; EPAP, end positive expiratory airway pressure; IPAP, inspiratory airway pressure; min, minimal; max, maximal; iVAPS, intelligent volume assured pressure support; Ti, inspiratory Time; min, minimal; max, maximal; Va, alveolar ventilation; Ve, minute ventilation; Vt, tidal volume. All ventilators in “vented” intentional leak configuration have a default level of EPAP. *Pmax is equal to (IPAP – EPAP) or (IPAP + EPAP) depending on manufacturer’s algorithm; **Pmax is always equal to (IPAP + EPAP).
Table 2. Ventilator settings and adherence to NIV treatment.

<table>
<thead>
<tr>
<th>AVAPS</th>
<th>Author</th>
<th>IPAP min or PSmn (cmH₂O)</th>
<th>IPAP max or PSpmax (cmH₂O)</th>
<th>EPAP (cmH₂O)</th>
<th>Respiratory rate (RR - breaths per minute)</th>
<th>Ti (sec)</th>
<th>Inspiratory trigger</th>
<th>Rise time</th>
<th>AVAPS rate (cmH₂O per min)</th>
<th>Target tidal volume (ml)</th>
<th>Chosen tidal volume (ml/kg body weight)</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vagiakis et al</td>
<td>4</td>
<td>19</td>
<td>4</td>
<td>16</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>450</td>
<td>8</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Saddi et al</td>
<td>10</td>
<td>14</td>
<td>4</td>
<td>21</td>
<td>1.3</td>
<td>Autotrack sensitive</td>
<td>NA</td>
<td>5</td>
<td>80</td>
<td>9</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Paglietti et al</td>
<td>10</td>
<td>NA</td>
<td>3</td>
<td>16</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>60</td>
<td>10</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Saddi et al</td>
<td>12</td>
<td>20</td>
<td>5</td>
<td>30</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>500</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Stowe et al</td>
<td>16</td>
<td>26</td>
<td>11</td>
<td>12</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Diaz-Abad et al</td>
<td>4</td>
<td>17</td>
<td>5 to 16</td>
<td>20</td>
<td>1.5</td>
<td>NA</td>
<td>3</td>
<td>NA</td>
<td>390</td>
<td>8 Average night use 6.4 hours</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Veeravigrom et al</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Gentin et al</td>
<td>11</td>
<td>17</td>
<td>4</td>
<td>22</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>2</td>
<td>80</td>
<td>8 Average night use 5.5 hours</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Lovejoy et al</td>
<td>20</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Saddi et al</td>
<td>11</td>
<td>20</td>
<td>4 to 6</td>
<td>21 ± 6.4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>221.8 ± 115.6</td>
<td>NA</td>
<td>% of use for >4 h/30 days 81 ± 30 days</td>
<td>NA</td>
</tr>
<tr>
<td>iVAPS</td>
<td>Khayat et al</td>
<td>5.5 (4.5-7.5)</td>
<td>13 (12.5-19)</td>
<td>12.2 (10.2-13)</td>
<td>5.5 (4.5-6)</td>
<td>20 (17-20)</td>
<td>1.1 (1-1.25)</td>
<td>1.3 (1.2-1.4)</td>
<td>4.5 (3.3-5.3)</td>
<td>6.5 (5.9-7.7)</td>
<td>8 (5.4-9.1)</td>
<td>8 (6-9.5)</td>
</tr>
<tr>
<td></td>
<td>Sunkonkit et al</td>
<td>NA</td>
<td>8.4±1.6</td>
</tr>
<tr>
<td>ASV</td>
<td>Tabone et al</td>
<td>3</td>
<td>8</td>
<td>NA</td>
<td>5 to 8</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>9</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

iVAPS, intelligent volume-assured pressure support; ASV, adaptive servo-ventilation; PSmn, minimal pressure support; PSpmax, maximal pressure support; Ti min, minimal inspiratory time; Ti max, maximal inspiratory time; RR, respiratory rate.
Table 3. Review of the studies on new long-term noninvasive paediatric ventilation modalities.

<table>
<thead>
<tr>
<th>Author</th>
<th>Study design</th>
<th>Population</th>
<th>Indications for NIV</th>
<th>Results</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vagiakis et al</td>
<td>Case report</td>
<td>16-year-old patient</td>
<td>CCHS / tracheostomy</td>
<td>Successful transition to noninvasive AVAPS from tracheostomy ventilation</td>
<td>Case report, retrospective study design</td>
</tr>
<tr>
<td>Saddi et al</td>
<td>Case report</td>
<td>10-month-old infant</td>
<td>CCHS</td>
<td>AVAPS was associated with a consistent transcutaneous CO₂ (tcCO₂) reduction when compared to conventional bilevel ventilation</td>
<td>Case report, retrospective design of the study</td>
</tr>
<tr>
<td>Paglietti et al</td>
<td>Retrospective observational study</td>
<td>2-month-old infant</td>
<td>CCHS / tracheostomy</td>
<td>Successful transition from IMV (PCV) to NIV and decannulation</td>
<td>AVAPS settings not available</td>
</tr>
<tr>
<td>Saddi et al</td>
<td>Case report</td>
<td>24-week-old premature infant</td>
<td>Severe BPD</td>
<td>more efficient control of hypoventilation, tracheostomy avoided</td>
<td>Single case report</td>
</tr>
<tr>
<td>Stowe et al</td>
<td>Case report</td>
<td>11-year-old patient</td>
<td>ROHHAD</td>
<td>CPAP and bilevel ST mode unsuccessful, AVAPS mode demonstrated to improve adherence, ventilation and pulmonary hypertension</td>
<td>Single case report</td>
</tr>
<tr>
<td>Diaz-Abad et al</td>
<td>Case report</td>
<td>8-year-old patient</td>
<td>OSA</td>
<td>reduction of AHI from very severe (138.2) to moderate levels (9.7), avoidance of tracheostomy, good compliance and clinical response to NIV treatment</td>
<td>Single case report</td>
</tr>
<tr>
<td>Veeravigrom et al</td>
<td>Retrospective observational study (of pediatric PSG results)</td>
<td>1/166 PSG studies (age unknown), 17 PAP titration studies</td>
<td>OSA / CCHS</td>
<td>Seventeen PAP titration studies were performed: AVAPS titration was conducted in a CCHS case</td>
<td>Study on prevalence of sleep disorders, with no data on ventilation modalities applied</td>
</tr>
<tr>
<td>Gentin et al</td>
<td>Case report</td>
<td>3-year-old patient</td>
<td>Multiminicore myopathy, nocturnal hypoventilation</td>
<td>High NIV tolerance, no recurrence of pneumonia episodes, better gas exchanges</td>
<td>Single case report</td>
</tr>
<tr>
<td>Lovejoy et al</td>
<td>Case report</td>
<td>11-year-old patient</td>
<td>Perioperative ventilation optimization in a patient with Ullrich congenital muscular dystrophy</td>
<td>No perioperative anesthesiologic/respiratory complications</td>
<td>Single case report, no other studies on perioperative paediatric AVAPS use</td>
</tr>
<tr>
<td>Saddi et al</td>
<td>Case series</td>
<td>19 patients (mean age 10.5 years)</td>
<td>NMD (9 patients), obstructive hypoventilation (5 patients), parenchymal lung disease (4 patients), CCHS (2 patients)</td>
<td>AVAPS demonstrated significant improvement in peak TcCO₂, mean TcCO₂, total sleep time with TcCO₂ > 50 mmHg and mean TcCO₂ in REM sleep</td>
<td>Single-center non blinded retrospective study design; no standardized protocol; long time interval between conventional BPAP and studies (difficult direct comparison)</td>
</tr>
<tr>
<td>Khayat et al</td>
<td>Retrospective observational study</td>
<td>8 patients (median age 10.6)</td>
<td>CCHS</td>
<td>PSG showed improvements when iVAPS was used (better reduction of TcCO₂)</td>
<td>Single center retrospective study design</td>
</tr>
<tr>
<td>Sunkonkit et al</td>
<td>Prospective observational study</td>
<td>20 patients (mean age 14.1 ± 3.4)</td>
<td>NMD</td>
<td>AVAPS may guarantee better adherence to ventilation therapy as compared to when S/T mode is used (increase in mean and median daily usage hours and median percentage of usage 4 h)</td>
<td>Single center study, no ventilator settings provided, results are not generalizable to younger children with NMD (only for body weight >30kg), exclusion bias (2 patients excluded due to poor NIV tolerance)</td>
</tr>
<tr>
<td>Tabone et al</td>
<td>Case report</td>
<td>11-year-old patient</td>
<td>Severe-mixed SAS</td>
<td>normalization of the AHI (1 event/hour), correction of nocturnal hypoventilation and improvement of daytime symptoms</td>
<td>Single case report, no other studies on paediatric ASV</td>
</tr>
</tbody>
</table>

AHI, apnea-hypopnea index; ASV, adaptive servo-ventilation; AVAPS, average volume assured pressure support; BPD, bronchopulmonary displasia; CCHS, congenital central hypoventilation syndrome; IMV, intermittent mandatory ventilation; iVAPS, intelligent volume-assured pressure support; NIV, non-invasive ventilation; NMD, neuromuscular disease; OSA, obstructive sleep apnea; PAP, positive airway pressure; PSG, polysomnography; ROHHAD, rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation; SAS, sleep apnea syndrome.