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From gastric aspiration to airway
inflammation
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Introduction

The term aspiration refers either to the inhala-
tion of food from the oropharynx or gastric con-
tents that have moved up the oesophagus in retro-
grade fashion [1]. An association between aspira-
tion and inflammatory airways disease was first
suggested during the 1960s and 1970s (e.g. [2-5]).
Aspiration by either route will lead to the presence
of increased amounts of potentially damaging
agents into the airways, which is hypothesised to
drive the onset and/or progression of a wide spec-
trum of pathological conditions that affect the
lungs and airways [6, 7]. During gastric aspiration,
potentially damaging digestive factors from the
stomach (via the oesophagus) pass into the rela-
tively unprotected airways. Gastric aspiration is
therefore hypothesised as being a prime causative
candidate for almost every chronic upper airways
disease. This hypothesis has proved difficult to
test, due to both the difficulties of assessing the
presence of reflux clinically or diagnostically [8-
10], alongside the fact that pharmacological and
surgical interventions for reflux can only reduce,
but not abolish, the occurrence of gastric content
reaching the oesophagus/airways.

The symptomology of airways disease is as
divergent as the potential aetiologies. One com-
mon feature is the presence of an inflammatory
response within the affected mucosal surfaces
[11-15]. The process of inflammation involves a
complex cascade of cellular, molecular and sys-
temic events that are aimed at benefitting the
clearance of noxious agents from the mucosal
surface. In most pathophysiological cases, the
inflammatory response appears to be in excess
of the normal state, and is believed to play a role
in disease progression. The inflammatory re-
sponse is not necessarily in proportion to the
damaging potential of the initiating agent, and
can drive further damage to the surrounding tis-
sues [16].

Previous studies would suggest a high inci-
dence of gastric aspiration in chronic diseases of
the lungs and upper airways [17-21]. In some
cases, associations have been made between
measured occurrence of biomarkers of reflux and
disease progression [22] or proxy measures of
the inflammatory response [23, 24]. A number of
observational studies have also noted an in-
creased co-morbidity between oesophagitis and
various airways diseases [25-27]. Perhaps the
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The airways are poorly protected from potentially
damaging agents contained within gastric contents. While
digestive factors are obvious damaging agents, gastric as-
piration may also deliver microbial agents, cytokines or
food antigens to airway tissues. Direct damage or the trig-
gering of the inflammatory cascade by gastric aspiration is
believed to drive airways disease onset and/or progression.

Evidence exists from experimental models demonstrat-
ing direct instillation of damaging factors to a range of air-
ways epithelia causes damage and/or an inflammatory re-
sponse. Clinical longitudinal studies have also noted an asso-
ciation between the presence of biomarkers of reflux in air-
ways samples and disease progression. A shared pathophys-
iology of many chronic airways diseases is a more negative
intrathoracic pressure. Such changes would drive an in-

creased abdominothoracic pressure gradient. These changes
in respiratory mechanics mean that chronic lung disease pa-
tients may be predisposed to reflux and subsequent aspira-
tion. Therefore, it appears that gastric aspiration and air-
ways disease progression may be linked not solely as cause
and effect, but seemingly within a vicious cycle.

A range of physiological factors govern both occur-
rence of gastric reflux into the pharynx/larynx and could
also increase the susceptibility of certain individuals to
disease progression. A range of long-term surgical and
pharmacological intervention studies are necessary to test
the benefit of such therapies in reducing disease progres-
sion or driving symptom improvement. Such studies may
be hampered by the reliability of available therapies in
halting gastric aspiration and the difficulty in the clinical
or biochemical assessment of gastric aspiration.
Monaldi Arch Chest Dis 2010; 73: 2, 54-63.



55

FROM ASPIRATION TO AIRWAY INFLAMMATION

most commonly held beliefs are a) aspiration
(particularly the reflux of gastric contents) is a
potential initial drive for disease progression and
b) symptomatic individuals may have more fre-
quent/injurious aspiration events than non-symp-
tomatic individuals. While these hypotheses ap-
pear sound, they both neglect key issues within
the association of aspiration and airway inflam-
mation, and their impact on disease progression.
The remainder of this review will discuss the in-
terplay between gastric aspiration and airways
inflammation in greater detail.

Aspirate content and lung inflammation

While direct aspiration of ingested food can
present antigens or bacterial load into the airways,
gastric aspiration has further potential modes of
antagonism of the airways’ mucosa. Firstly, the
presence of digestive factors, including enzymes,
bile acids and other detergents (e.g. lecitihins) and
gastric acid have all previously been shown to
have the potential to damage airways mucosa di-
rectly [28-31]. The main digestive protagonists
from gastric juice that have previously been sug-
gested to drive mucosal damage are gastric acid,
pepsin and bile acids.

Gastric acid and pepsin are secreted by the
parietal cells and chief cells respectively in the
stomach. These gastric secretions are important
both in the early stages of protein digestion, but
may also act as an important innate barrier to mi-
crobes entering the body orally [32-35]. Bile acids
are produced by the liver conjugated to glycine or
taurine and secreted into the small intestine where
they act to emulsify dietary lipids to aid fat diges-
tion and absorption [36, 37]. Small intestinal con-
tents are believed to frequently reflux from the
duodenum into the stomach, with well over 50%
of gastro-oesophageal reflux disease (GORD) pa-
tients reported to experience the movement of
mixed gastric and duodenal contents up the oe-
sophagus [38]. A range of small intestinal en-
zymes could also end up in the stomach by this
route. If they are not degraded or denatured during
the retrograde passage from duodenum to stomach
to the aerodigestive tract. For example trypsin is
unaltered by exposure to pepsin at pH 4.0, but in-
activated by exposure to pepsin at pH 2.0, they al-
so have the potential to cause mucosal damage.

Aspiration of digestive products may also lead
to an indirect drive for mucosal inflammation.
Firstly, homogenised and partially hydrolysed
foods may act as a more amenable substrate to
bacterial species already occurring within the air-
ways. Secondly, the hydrolysis and denaturation of
dietary proteins during normal digestion could
lead to the appearance of previously sequestered
antigen. The potential mechanisms for damage by
gastric aspirate are summarised in table 1.

Pharmacological therapies for acid suppres-
sion have been shown to greatly reduce oe-
sophageal exposure to low pH [39, 40]. Such ther-
apies will act to reduce the total volume of the gas-

tric juice [41-43], but may act to effectively in-
crease the concentration of pepsin, bile acids and
other putatively damaging digestive factors due to
the lower volume of gastric secretion. Further from
this, recent studies have demonstrated an increased
incidence of intestinal infection and communica-
ble diseases following acid suppression [44-48].
This is due to an overgrowth of oral-type bacteria
within the stomach [49] as a result of the decreased
innate immunity with the removal of the acid bar-
rier. Subsequent aspiration events under such ther-
apies may therefore be of lower total volume and
higher pH, but may have a higher concentration of
other putatively damaging endogenous and micro-
bial factors.

Direct damage of the airways mucosa by gas-
tric aspiration is the most obvious trigger for an
inflammatory response. However, a number of
key routes for gastric aspiration-driven inflamma-
tion are also hypothesised. The majority of the air-
ways epithelium is lined by a functional mucus
barrier that acts to reduce mucosal exposure of
damaging inhaled agents, as well as entrapping
such agents and facilitating their removal through
the process of mucociliary clearance [50, 51]. As
such, efficient mucus barrier function plays a vital
role in the innate defence of the airways [50].
Many airways diseases are characterised by mu-
cus hypersecretion [52, 53]. This can be a result of
increased fluid output, or increased release of
mucin granules by the epithelial goblet cells
and/or increased gland-based secretion (driven by
secretagogues, such as IL-8). If the mucus layer
becomes too rheologically thick or thin, mucocil-
iary clearance is greatly reduced, leaving the un-
derlying tissues more susceptible to damage and
infection [50].

Inflammatory responses to damaging agents
may also be partly driven by the presence of spe-
cific receptors within the epithelium. In the case
of factors like bacterial lipopolysaccharides, such
receptor-mediated pathways are fairly well re-
searched [54, 55] and appear to be mediated by
toll-like receptor activation and a subsequent in-
flammatory cascade The triggering of nociceptors
such as the capsaicin receptor in the airways by
low pH is also well documented [56, 57]. Evi-
dence would also suggest that recurrent cough
could also cause airways damage/act to mediate
local inflammatory pathways. In a group of pa-
tients with chronic non-productive cough, a subset
of individuals who did not have asthma or acidic
reflux (“idiopathic” non-productive coughers) had
elevated levels of mast cells within their bron-
choalveolar lavage fluid in comparison to non-
smoking, healthy controls [58]. Recent prelimi-
nary data have also suggested that there may be
specific receptors that are triggered by the pres-
ence of gastric juice factors, such as pepsin and
bile [59, 60].

A summary of these pathways is suggested in
figure 1 below.

Recent interest in the field has noted that ret-
rograde movement of gas boluses from the stom-
ach may also be an important route of gastric aspi-
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Fig. 1. - A summary of the hypothetical routes through which gastric aspiration could drive mucosal inflammatory responses within the air-
ways. 1. Mucus degradation will potentially expose the underlying mucosa leading either to 2. Direct mucosal injury/insult from gastric aspi-
rate, or indirect mucosal injury/insult from other damaging agents inhaled into the airways. As a result of putative receptor-mediated response,
or a consequence of mucosal damage, an increased drive for white cell recruitment occurs, resulting in further 4. Inflammation-induced dam-
age. Further from this, the airways epithelial cells respond to damage by releasing a range of local inflammatory mediators, including IL-8.
These mediators drive neutrophil recruitment, as well as 5. Mucus release from goblet cells, and 6. Inflammatory-mediator damage driven by
factors released by the recruited neutrophils. Mucus hypersecretion can result in loss of mucociliary clearance, leading to further exposure of
the mucosa to damaging agents. Reactive oxygen species (ROS) and matrix metalloproteinase (MMP) release will lead to further mucosal and
epithelial damage from within.

Table 1. - Potential mediators of airways inflammation and damage within gastric contents

Directly damaging agents Agents released by digestion

Digestive factors (i.e. enzymes, bile, acid) Digested macronutrients

Ingested, salivary or gastric microbes Antigen formed by dietary protein hydrolysis

Food particles Microbe release from gastric bolus

Food antigen

ration [61, 62]. While this would not deliver the
same volume of gastric contents to the airways, it
is believed that aerosolised vapour could act to

coat airways mucosa. The aerosolised content
would be expected to contain similar damaging
agents to those outlined in table 1.
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Reflux pathophysiology

Reflux of gastric contents is an episodic event
in both the physiological and pathophysiological
state [63]. 24-h ambulatory impedance monitoring
of 72 healthy adults [64] demonstrated that the
median number of gastro-oesophageal reflux
events to occur in a day was 44, with a great deal
of inter-individual variation (the 25th and 75th per-
centiles were 25 and 58 events respectively).
These episodes are characterised by increased
gastric motility, a transient reduction in lower oe-
sophageal sphincter tone and increased intragas-
tric pressure. Recent literature has focussed on a
central role for transient lower oesophageal
sphincter relaxations (tLOSRs) [65-69]. While ev-
idence would suggest that tLOSRs are no more
frequent in GORD patients than asymptomatic
volunteers, the likelihood that GORD patients will
reflux during the period of sphincter relaxation is
almost twice as high [69]. While significantly
higher occurrences of reduced lower oesophageal
pressure are noted in GORD patients complicated
with severe hiatal hernia [70, 71], it must be not-
ed that this particular patient group is not indica-
tive of GORD patients per se [63]. Functionally,
reflux from the stomach to the oesophagus has the
potential to occur whenever the intragastric pres-
sure exceeds lower oesophageal sphincter pres-
sure. Manometry studies have noted a higher pres-
sure gradient across the lower oesophageal
sphincter in GORD patients than non-sympto-
matic controls, with the difference in gradient ow-
ing to a higher gastric pressure [72]. Recent as-
sessments of gastrointestinal motility have also
suggested that the position of the “acid pocket”
(i.e. secreted gastric juice that sits above the meal
bolus) in relation to the diaphragm [73] may drive
reflux. Further functional studies have suggested
that the occurrence of retrograde waves of peri-
stalsis up the oesophagus appears to be propagat-
ed by the occurrence of tLOSRs [65], which could
act to further increase aspiration events. A previ-
ous study in non-symptomatic volunteers noted
that barostat distension of the stomach resulted in
increased number of tLOSRs than distension to
the same degree by an ingested meal [68]. This
would suggest that the drive for gastric motility
given by postprandial luminal content may reduce
the frequencies of tLOSRs.

Intragastric pressure is controlled by a com-
plex array of neurohumoral pathways that govern
lower oesophageal and pyloric sphincter tone,
gastric compliance, gastric secretion volume and
gastric motility. Alongside vagal innervation,
three main hormonal drives may govern all of
these factors [74]. Cholecystokinin (CCK) release
from the duodenal I cells is a major drive for re-
duced gastric emptying, while gastrin release
from gastric G cells increases gastric mixing.
Both of these factors could drive an increased in-
tragastric pressure. At the same time, motilin re-
lease from intestinal enteroendocrine cells acts to
increase the rates of gastric emptying, and thus
would be expected to decrease intragastric pres-

sure. Previous reviews have suggested the poten-
tial of these agents and their receptors as targets
for reflux therapy [75, 76].

Reflux symptoms are prevalent in the majori-
ty of airways diseases. For instance, previous re-
ports would suggest that around 80% of adult
asthmatics have symptoms of reflux [77, 78]. It
must be noted that the association between gastric
aspiration and airways pathophysiology is often
hypothesised to be a result of aspiration driving
the disease process. However, the association be-
tween the two processes in not fully defined, and
a number of researchers have suggested that the
negative intrathoracic pressure caused by a result
of airways obstruction and/or respiratory distress
may act to drive reflux by increasing the likeli-
hood of gastric contents refluxing into the oe-
sophagus [78-80]. A preliminary temporal associ-
ation study was carried out between episodes of
coughing/wheezing in asthmatics and reflux oc-
currence, as assessed by pH-metry in 2001 [81].
Within this population group, reflux events pre-
ceded cough events by less than 2 minutes 40% of
total cough events per patient, with only 6% of re-
flux events being preceded by cough events over
the same time-course. These figures were elevat-
ed to 50% and 12% respectively when a five min-
utes inter-event time cut-off was applied. In more
recent studies where impedance monitoring has
been used to assess reflux in paediatric asthma
[82], cystic fibrosis [83] and chronic cough [84]
patients. In all cases within these studies, it must
be noted that an appreciable number of cough
events were associated with reflux events within
two of these studies, 26.6% total of events within
a 5-minute window [82] in paediatric asthmatics
and 30.6% within a two-minute window in chron-
ic cough patients [84]. Such temporal studies may
not best represent the interplay between intratho-
racic pressure and reflux/aspiration. In terms of
intrathoracic pressure mediating reflux, cough
represents a short-term negative intrathoracic
pressure change, as opposed to a more uniform,
long-term change towards lower pressure seen in
disease processes where there is chronic lung ob-
struction. In terms of aspiration driving airways
symptoms, cough is an immediate response, be-
lieved to be triggered by a range of cough recep-
tors [85]. As there are previous reports of reflux-
ers having reduced laryngeal sensitivity [86-89],
it is perhaps unsurprising that the cough reflex is
not always elicited in response to gastric aspira-
tion. Over a short time scale, gastric aspirate may
not be damaging enough to the airways mucosa to
drive a relevant clearance response such as cough.
As previously discussed, aspiration of aerosolised
gastric contents may also lead to damaging mate-
rial entering the airways, that would be consider-
ably less likely to elicit an immediate cough re-
flex than a large volume reflux event. One previ-
ous study used a canine model to assess the im-
pact of balloon-catheter-induced upper airways
obstruction on reflux occurrence (assessed by pH-
metry). Within this study, there was a strong and
significant positive correlation (R = 0.928, P =
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0.023) between the change towards a more nega-
tive intrathoracic pressure and percentage of time
proximal pH was below 4 in five dogs [90]. While
this study is low in numbers, it may model how
long-term pressure changes affect gastric aspira-
tion.

From the above, there is evidence that the de-
velopment of an abdominothoracic pressure gra-
dient may drive further reflux and gastric aspira-
tion, with consequent worsening of disease symp-
toms. While there is no conclusive proof as to
whether airways symptoms drive reflux or vice
versa, it is perhaps more likely to consider that
these events could conspire to worsen chronic
disease progression through a vicious cycle [91].
Preliminary longitudinal data from our own
group would suggest that reflux is a common oc-
currence post lung transplantation, even at time-
points when lung mechanics should be close to
normal [92].

Our group has consistently shown that pepsin,
as a marker of gastric aspiration, is elevated in
lung transplant recipients [21, 22] and has been
associated with neutrophilic airway inflammation
and pathologist graded acute rejection [22]. Acute
airway rejection is known to be associated with
airway inflammation and to constitute a risk fac-
tor for chronic allograft dysfunction, recognised
physiologically by fixed airflow limitation (Bron-
chiolitis Obliterans Syndrome: (BOS) [93]. The

pathology underlying BOS involves inflammation
and airway remodelling and fibrosis [93-95]. This
pattern of airway damage, as in the case of reflux
and aspiration, is implicated in the progression of
a number of airways diseases including asthma
and COPD [96]. In lung allografts, this can be
very aggressive and is the main reason for the
chronic loss of lung allografts [93]. In other more
common lung diseases such as COPD the pattern
of airway injury develops over a longer time
frame.

One potential link between aspiration and air-
ways remodelling is perturbation of TGFβ home-
ostasis. TGFβ is a pleiotropic growth factor (re-
viewed elsewhere [16, 97]) that is implicated in
both airway repair and pathophysiology, and
which is elevated in airway disease including BOS
post transplantation [98].

We have shown that TGFβ can initiate epithe-
lial mesenchymal transition (EMT) in epithelial
cells from lung allografts [99]. In EMT, epithelial
cells lose epithelial characteristics adopting a
mesenchymal, fibroblast phenotype which may
cause airway fibrosis through the production of
collagen. The process of EMT has been docu-
mented in lung development, metastatic disease
and a range of other settings involving organ fi-
brosis [100]. Consistently TGFβ is recognised to
be a prototypical drive for EMT and it is therefore
of interest that bile acid challenge of human air-

Fig. 2. - The effect of varying levels of lithocholic acid on cell viability in primary lung epithelial cultures from 4 separate lung transplant recipi-
ents (here labelled A - C), 6 - 15 months post-transplantation. Cell viability (i.e. % cells metabolically active) was assessed by CellTiter-Blue cell
viability assay (Promega. Madison, WI) [115, 116].
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way epithelial cells has been shown to lead to the
release both of inflammatory cytokines and TGFβ
[101]. Most TGFβ is held in an in-active latent
form. This may be activated through protease re-
lease from inflammatory cells, as well as directly
by stomach acid. Type IV collagenases such as
MMP-9 are also released in the inflammation with
which aspiration is associated. Damage of airway
epithelial basement membranes, which contain
type IV collagen, is also known to promote EMT
[100].

In addition to ex vivo studies on primary air-
way epithelial cells suggesting the potential for
EMT in lung allografts, we have also shown that
airway biopsies from stable lung transplant recipi-
ents express markers of the EMT proteome [99,
102]. Overall aspiration may be linked both to air-
ways inflammation and remodelling/fibrosis. This
potential linkage requires further appropriate
translational research [103].

Increased susceptibility to aspiration-induced
airways damage

Previous studies in non-symptomatic individ-
uals would suggest that reflux into the oesophagus
and even the pharynx is a frequent occurrence
within normal life [104-107]. It might therefore be
expected that gastric aspiration is also an occur-
rence that most individuals will have experienced.
Assessment of bronchoalveolar lavage fluid in in-
dividuals asymptomatic of upper airways disease
suggests that biomarkers of gastric aspiration can
occur at low but detectable levels in 2 of 4 healthy
individuals [22]. Some background levels of
pepsin may be present in the broncho-alveolar
lavage fluid of healthy individuals, as pepsinogen
C (a precursor of human pepsin 5 and 6) has pre-
viously been reported to occur in type 2 alveolar
cells [108]. While this data would suggest that
gastric aspirate does not occur as frequently or to
the same degree in a healthy population, it is im-
portant to consider that there may be other factors
that predispose some individuals to airways injury
as a result of gastric aspiration, either as a result
of increased volume of aspirate reaching the air-
ways, or due to a lack of defence mechanisms
against aspirate-induced inflammation or injury.
Data from the authors’ laboratories would suggest
that primary cell cultures of lung epithelia from
different individuals react differently to insults
from putatively damaging agents in gastric aspi-
rate, such as the secondary bile acid lithocholic
acid. While all cultures appear to be close to com-
pletely unviable at the highest concentration of
lithocholate used (i.e. 50 µM), the drop-off of vi-
able cells numbers follows a different gradient be-
tween individuals.

The data above are suggestive of genetic vari-
ability in the inflammatory response caused by
such mediators of damage. Previous studies have
also suggested that certain patients groups who are
more or less susceptible to reflux-mediated disease
tend to show specific genotype [17], or differential

expression of a specific genes involved in airway
protection [28, 109, 110]. While such studies
would give credence to genetic predisposition as
an important factor in aspiration-driven disease
progression, it is important to consider that “sus-
ceptibility” may also come about as a result of
temporal, anatomical or physiological changes in
airways functionality.

In general, increased airways damage or in-
flammation as a result of aspiration is likely to be
as a result of decreased defence against aspiration,
or reduced clearance rates of damaging agents that
are delivered to the mucosa. As described above,
previous studies have suggested an elevated
threshold for laryngeal sensitivity in refluxers [86-
89], which is higher than in asymptomatic individ-
uals [111]. A less sensitive larynx would not per-
form its respiratory defence mechanisms [112,
113] as well as normal upon exposure to reflux. As
a result, if the larynx were insensitive to contact
with gastric contents, gastric aspiration would be
more likely to occur. Factors such as vagal damage
(e.g. following lung transplant surgery [114]) may
also drive an increased incidence of gastric aspira-
tion by affecting aerodigestive tract motility, and
may also reduce cough and mucociliary clearance.
Previous events resulting in damage or an inflam-
matory response in the airways could lead to an in-
creased likelihood of subsequent damage as a re-
sult of gastric aspiration insult. This could be as a
result of a loss of the innate barrier function of air-
ways mucus, or because the underlying mucosa
has become easier to penetrate. In a similar fash-
ion, loss of effective mucociliary clearance will re-
sult in increased mucosal exposure to the damag-
ing agents in gastric aspirate.

Future work

Current evidence is indicative of an associa-
tion between airways disease progression, inflam-
matory processes and gastric aspiration. The next
step from a clinical perspective may be the devel-
opment and implementation of pharmacological
or surgical interventions in the relevant patient
groups, targeted at reducing gastric aspiration
rates with objective measures of airways disease
as the primary outcomes in adequately powered,
controlled studies. In conditions where improve-
ment of disease symptoms is unlikely (e.g. idio-
pathic pulmonary fibrosis), a reduction in disease
progression rates may be the most relevant out-
comes to measure. Such studies will be demand-
ing and necessitate the collaboration of both gas-
troenterology and pulmonary specialists, and may
be hampered by the difficulties in assessing oc-
currence of gastric aspiration/reflux clinically.
Biochemical analysis of biomarkers of gastric as-
piration may be a useful predictive surrogate of
gastric aspiration, but further work is necessary to
characterise how long such biomarkers occur
within the airways following an aspiration event.
Methodological standardisation is an important
requirement.
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