Vulnerable personality and Takotsubo cardiomyopathy consequent to emotional stressful events: a clinical case report

Introduction

The main feature of Takotsubo cardiomyopathy (TTC) is transient apical left ventricular dysfunction that mimics myocardial infarction, but in the absence of significant coronary artery disease. The onset of TTC can be triggered by an acute, intense emotional stress [1-5], but the exact pathogenic mechanisms still remain undefined [6, 7]. It is recognized that not all individuals are equally susceptible to stress-mediated cardiovascular events. Although a high prevalence of mood disorders in patient with TTC has been previously reported [8-13], however, studies specifically focused on analysing personality traits in TTC are still lacking.

Case report

A 58-year-old female was sent from a clinic by ambulance to the Emergency Department (ED) for chest pain and ST elevations on ECG. Her chest pain began 3 hours before on admission after a domestic argument. The transthoracic echocardiogram showed severe systolic dysfunction with an ejection fraction of 20%. Cardiac catheterization revealed no significant coronary artery disease. The left ventriculogram showed apical ballooning with hyperdynamic proximal segments. A diagnosis of Takotsubo Cardiomyopathy (TTC) was made according to the Mayo Clinic 2008 criteria. The patient evolved with improvement of her condition and, therefore, was discharged from the hospital. Follow-up echocardiogram seven days later showed normal LV size and function with ejection fraction (EF) of 43%. Paykel Life Stress Event Scale identified as emotional trigger a domestic argument occurred 3 hours before symptom onset. History showed a major life stress event, death of a loved one, six months before symptoms. The patient underwent psychological assessment after hospital discharge by Emotional Regulation Questionnaire and BDI showing high suppression/low reappraisal profile and moderate depression.

Conclusion

This case highlights the hypothesis of a possible link between cognitive emotional processing and vulnerability to Takotsubo syndrome.

Keywords: Takotsubo cardiomyopathy, personality traits, stressful event, emotional regulation, emotional trigger.
years ago. No family history for heart disease was present. A diagnosis of Takotsubo Cardiomiophaty (TTC) was made according to the Mayo Clinic in 2004 and were modified in 2008 criteria. The patient evolved with improvement of her condition and, therefore, was discharged from the hospital. Follow-up echocardiogram seven days later showed normal LV size and function with ejection fraction (EF) of 43%. A month later, the patient was asymptomatic in regard to her cardiovascular system. Control echocardiogram showed recovery of left ventricular function and mobility. At 4 months of follow-up, ECG and nuclear medicine tests were again repeated and showed no presence of impaired mobility or perfusion defects.

Emotional trigger event before symptom onset were identified using Paykel Life Stress Event Scale [14] at acute phase. Three hours before symptom onset emotional trigger, was a domestic argument. But anamnesis history showed a major life stress event, death of a loved one, six months before (Table 1). The patient underwent psychological assessment after hospital discharge by Emotional Regulation Questionnaire showing high suppression/low reappraisal profile.

Depression and Emotional personality was assessed 2 week after the onset symptoms by Beck Depression Inventory (BDI) [15] and Emotion Regulation Questionnaire (ERQ) [16]. ERQ is a ten items (1-7 likert scale) measure of the habitual use expressive suppression (5-items) and cognitive reappraisal (5-items). Emotional Appraisal: Antecedent-focused regulation, in which intervention occurs early and is focused on altering the effect of

<table>
<thead>
<tr>
<th>Emotional Trigger</th>
<th>Symptom onset</th>
<th>Past Stressful event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic argument</td>
<td>(1 hour before)</td>
<td>Death of a loved one (6 months before)</td>
</tr>
</tbody>
</table>

Figure 1. - Coronary arteriography: top left: right coronary artery; top right: left coronary artery. Left ventriculogram. (Bottom left) The diastolic phase. (Bottom right) The systolic phase showing apical ballooning with sparing of the apex with hyperdynamic basal segments, consistent with takotsubo cardiomyopathy.
Emotion-generating cues [17]. This strategy modulates emotional response tendencies early on, before they give rise to full-fledged responses [18]. Cognitive reappraisal is an antecedent-focused strategy and involves construing a potentially emotion-eliciting situation in a way that changes its emotional impact. Emotional Suppression: Response-focused regulation, which acts late in the process and is focused on altering emotional output (e.g., action and expression) [17]. This strategy modulates the emotional responses themselves later on, once they have arisen. Expressive suppression is a response-focused strategy and refers to the inhibition of external cues to one’s internal emotional state (e.g., facial expression, verbal utterances, gestures). It is a form of response modulation that involves inhibiting ongoing emotion-expressive behavior, typically with little or no change in ongoing emotion experience, and increased sympathetic activation of the cardiovascular system [19-21].

Patient showed an high level in suppression style (score=30) and a low level in reappraisal style (score=9) and moderate depression symptoms (score=49) (Table 2).

Discussion

The results of the present single case induce to hypothesize that emotional regulation personality based on suppression may be a potential vulnerable condition of Takotsubo reaction after emotional stressful event. Besides, inappropriate or ineffective emotion regulation is emerging as a critical component in the development and maintenance of depression disorder [22-27]. The present case report data reinforce recent findings revealing a high prevalence of depression [8, 28] in TTC patients preceding the onset of the acute cardiomyopathy. This is consistent with that data showing as individuals with depression have decreased vagal tone and an increased adrenomedullary hormonal response to stressful events [29] and appear to have very high noradrenaline spillover [30]. Suppression is associated with decreases in facial behavior and body movement and an increase in sympathetic activation of the cardiovascular system [19]. The Expressive Suppression strategy comes relatively late in the emotion-generative process, and primarily modifies the behavioral aspect of the emotion response tendencies. Suppression should thus be effective in decreasing the behavioral expression of negative emotion, but might have the unintended side effect of expressing positive emotion [31]. At the same time, suppression will not be helpful in reducing the experience of negative emotion, which is not directly targeted by suppression and may thus continue to linger and accumulate unresolved. It requires the individual to effortfully manage emotion response tendencies as they continually arise. Moreover, suppression creates in the individual a sense of incongruence, or discrepancy, between inner experience and outer expression. Investigations of inhibitory control in human and nonhuman primates, however, suggest that the right ventrolateral prefrontal cortex is associated with volitional response inhibition [32-39]. Over the long term, frequent use of expressive suppression results in diminished control of emotion and greater depressive symptomatology [16].

It is possible to hypothesize that the elevated level of suppression has contributed to the maintenance of the depressive symptom after the first major traumatic (death of a loved one), favoring the vulnerability to TTC by decreasing vagal tone and increasing adrenomedullary hormonal response to stressful events and noradrenaline spillover.

This case report is consistent with other available evidence affirming the pathophysiological importance of extreme sympathetic nervous system activation in TTC, suggesting that endothelial dysfunction is involved in mechanisms beyond high catecholamine levels [40]. Based on our results, it is reasonable to hypothesize that the origin of sympathetic hyperreactivity may be associated with specific personality emotional traits associate to high suppression. Thus, emotional regulation profile can be conceptualized as contributing to individual differences in cardiovascular reactivity to stress through sympathetic outflow to the heart, with cardiac noradrenaline spillover potentially achieving very high values [41].

Conclusion

This case highlights the possible link between Emotional Regulation personality and TTC reaction. This implies that the risk of an event may depend not only on the individual’s cardiovascular vulnerability following stress exposure, but also on his or her coping mechanisms. The results suggest to analyze by well designed prospective case control studies if personality traits may be considered as markers of risk and routinely screened in the secondary prevention of TTC patients. However, these data suggest a personality vulnerable profile, based on cognitive style to process the emotions, that, by the link with depression symptoms, can make susceptible to physiological processes (e.g. heart rate, hormonal, or other physiological reactions), typical of TTC, after traumatic trigger. This implies that the risk of an event may depend not only on the individual’s cardiovascular vulnerability following stress exposure, but also on his or her coping mechanisms. Findings of
future researches will allow to establish pathophysi-
ological constructs, and develop and test associated
diagnostic and treatment models, so that these pa-
tients can be identified and appropriately treated.

Riassunto

Introduzione: Nonostante la cardiomiopatia di
Takotsubo (TTC) possa essere scatenata da uno stress
emozionale acuto ed intenso, i meccanismi patoge-
nici restano poco definiti.

Presentazione: Una donna di 58 anni viene tras-
ferita in ambulanza al Pronto Soccorso con dolore
toracico e soprasistolimento del tratto ST-T al-
le ECG. Il dolore toracico si era manifestato 3 ore
prima del ricovero dopo una lite domestica. L’eco-
cardiogramma mostrava una disfunzione sistolica
severa con una frazione di eiezione del ventricolo
sinistro del 20%. L’angiografia coronarica non rile-
vava una coronaropatia significativa. La ventricolo-
grafia sinistra mostrava ballooning apicale con seg-
menti prossimali iperdinamici. Veniva quindi posta
diagnosi di cardiomiopatia di Takotsubo in accordo
ci alla Mayo Clinic del 2008. Le condizioni
cliniche della paziente miglioravano e quindi veniva
dimessa. Il follow-up ecocardiografico 7 giorni dopo
un’azione accidentale mostrava dimensioni del ventri-
colo sinistro nei limiti con frazione di eiezione del
43%. Utilizzando la Paykel Life Stress Scale, un
trigger emozionale è stato identificato essere una
lite domestica tre ore prima della comparsa dei si-
tomi. L’anamnesi ha evidenziato un evento mag-
giori di stress di vita come la perdita di una persona
cara 6 mesi prima dei sintomi. Dopo la dimissione
ospedaliera, la paziente è stata sottoposta a valuta-
ze psicologica mediante Emotional Regulation
Questionnaire e BDI che hanno mostrato un profilo
di elevata repressione/bassa rivalutazione e depres-
sione di grado moderato.

Conclusioni: Questo caso conferma il collega-
mento tra il processing emozionale cognitivo e la
Vulnerabilità alla sindrome di Takotsubo.

ABBREVIATIONS LIST

Takotsubo cardiomyopathy (TTC)
Paykel Life Stress Events Scale (PLSE)
Emotional Regulation Questionnaire (ERQ)
Beck Depression Inventory (BDI)

References

1. Sharkey SW, Lesser JR, Menon M, et al. Spectrum and
significance of electrocardiographic patterns, troponin
levels, and thrombosis in myocardial infarction
frame count in patients with stress (tako-tsubo) cardiomyopathy
and comparison to those in patients with ST-elevation an-
terior wall myocardial infarction. Am J Cardiol 2008;

2. Connelly KA, Maclsaac AI, Jelinek VM. Stress, myocard-
dial infarction, and the "tako-tsubo" phenomenon. Heart
2004; 90(9): e52.

3. Wittstein IS, Thiemann DR, Lima JA, et al. Neurohu-
moral features of myocardial stunning due to sudden

4. Yaghoubi AR, Ansarir K, Hashemzadeh S, et al. Tako-
tsubo cardiomyopathy induced by emotional stress leading
to severe mitral regurgitation, cardiogenic shock and car-

5. Nef HM, Mollmann H, Hilpert P, et al. Sympathoadren-
ergic overstimulation in Tako-Tsubo cardiomyopathy
triggered by physical and emotional stress. Int J Cardiol
2008; 130(2): 266-8.

6. Abraham J, Mudd JO, Kapur NK, et al. Stress cardiomy-
opathy after intravenous administration of cate-
cholamines and beta-receptor agonists. J Am Coll Cardiol

8. Mudd JO, Kapur NK, Champion H, Schulman SP,
Wittstein IS. Patients with Stress-Induced (Takotsubo)
Cardiomyopathy Have an Increased Prevalence of Mood
Disorders and Antidepressant Use Compared to Patients
with Acute Myocardial Infarction. Journal of Cardiac

characteristics and four-year outcomes of patients in the
Rhode Island Takotsubo Cardiomyopathy Registry. Am J
Cardiol 2009; 103(7): 1015-1019.

of Tako-Tsubo Cardiomyopathy. Am J Cardiol 2009;
104(4): 578-582.

2013: Frequency of Psychiatric Disorders in Persons
With Stress Induced Cardiomyopathy. Circulation 2010;
122(21_MeetingAbstracts): A20134.

12. Summers MR, Lennon RJ, Prasad A. Pre-Morbid Psychi-
atrie and Cardiovascular Diseases in Apical Ballooning
Syndrome (Tako-Tsubo/Stress-Induced Cardiomyopa-
thy): Potential Pre-Disposing Factors? J Am Coll Cardiol

patients with stress-induced cardiomyopathy: a case-con-

14. Paykel E. Life events: effects and genesis. Psychol Med

15. Beck AT, Steer RA, Ball, and W. Ranieri, Comparison
Clinical Characteristics and Four-Year Outcomes of Patients
with Stress-Induced Cardiomyopathy. J Pers Assess
1993; 64(6): 970-86.

responses of individuals with anxiety and mood disorders.

17. Moore SA, Zollner LA, Mollenholt N. Are expressive
suppression and cognitive reappraisal associated with
stress-related symptoms? Behav Res Ther 2008; 46(9):
993-1000.

18. Goldin PR, McRae K, Rumel W, Gross JJ. The neural
bases of emotion regulation: reappraisal and suppression

and down-regulating facial disgust: affective, vagal, sym-
pathetic, and respiratory consequences. Biol Psychol

20. Gross JJ. Emotion regulation: affective, cognitive, and
 social consequences. Psychophysiology 2002; 39(5):
281-91.

21. Gross JJ, Levenson RW. Emotional suppression: physi-
Psychol 1993; 64(6): 970-86.

22. Barlow DH, Allen LB, ChaoteML. Toward a unified
treatment for emotional disorders. Behavior Therapy

23. Campbell-Sills L, Barlow DH, Brown TA, Hofmann SG.
Acceptability and suppression of negative emotion in

Effects of suppression and acceptance on emotional re-
 sponses of individuals with anxiety and mood disorders.

