Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. The Monaldi Archives for Chest Disease is, therefore, E-publishing PDF files of an early version of manuscripts that undergone a regular peer review and have been accepted for publication, but have not been through the copyediting, typesetting, pagination and proofreading processes, which may lead to differences between this version and the final one. The final version of the manuscript will then appear on a regular issue of the journal. E-publishing of this PDF file has been approved by the authors.

Monaldi Arch Chest Dis 2021 [Online ahead of print]

To cite this Article:
Single coronary artery originating from right sinus. Role of MDCT and a review of literature

Valeria Pergola 1, Giulio Cabrelle 2, Giulio Barbiero 2, Carlo Maria Dellino 1, Elena Reffo 3, Giovanni Di Salvo 3, Raffaella Motta 2

1 Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy.
2 Department of Medicine, Institute of Radiology, University of Padua, Italy.
3 Department of Women's and Children's Health, University of Padua, Italy.

Corresponding author
Giulio Cabrelle MD
Institute of Radiology
Department of Medicine
Padua University Hospital
mobile: +393494361936
Email: giulio.cabrelle@gmail.com

Keywords: ECG-gated multidetector computed tomography (MDCT), coronary artery anomaly, single coronary artery, coronary stenosis, coronary artery bypass graft.

Author’s role

• Conception of the work: Giulio Barbiero, Giulio Cabrelle
• Acquisition, analysis, or interpretation of data for the work: Giulio Cabrelle, Carlo Maria Dellino
• Drafting the work and approval of the version to be published: Giulio Barbiero, Valeria Pergola, Raffaella Motta, Elena Reffo, Giovanni Di Salvo

Disclosures about potential conflict of interests: nothing to declare
Further information: These cases were orally presented at the congress ICNC-CT in May 2021 in the section “Interesting clinical cases, session one”

ABSTRACT
SCA from the right sinus is the rarest coronary anomaly. We describe 2 cases: 1 with SCA type-1RI; 2 with SCA type-2RII-A. Appropriate and successful treatment (CABG in case-1; PTCA in case-2) was chosen relying on accurate morphological description provided by MDCT, in order to recognize all the possible mechanisms of myocardial ischemia.

INTRODUCTION
Coronary artery anomalies (CAA) represent the second most common cause of sudden cardiac death in young competitive athletes. Patients are usually asymptomatic and, in most of the cases, CAA are incidentally discovered [1]. There are several types of CAA according to their origination and course (e.g. separate ostia of left anterior descending (LAD) and left circumflex (LCX), intrinsic anatomy (e.g. ostial stenosis, atresia, ectasia, hypoplasia), coronary termination (e.g. fistulas) and anomalous collateral vessels. Among them, single coronary artery (SCA) is the rarest, with a prevalence of 0.02-0.06% in the general population [1,2]. As historical note, in one of the two vascular anatomical models in “Sansevero Chapel” in Naples (Italy), an origin of single coronary artery from the right aortic coronary sinus is showed in detail [3].

In the current, ECG-gated multi-detector CT (MDCT) is becoming a widespread technique for the detection of CAA, with an increasingly solid evidence-based role [4]. Its multi-planar capability allows a precise visualization of the origin, course, and termination of vessels.

In patients with coronary artery disease, the detection of coronary anomalies, and above all SCA, may affect treatment (e.g. medical therapy over percutaneous intervention) even if no recent treatment guidelines or follow-up recommendations exist at the moment [5,6].

We report two cases of right-SCA confirmed by MDCT after development of ischemic cardiopathy. Treatment was different, with good result in both of them: percutaneous revascularization (PTCA) vs coronary artery bypass graft (CABG)

CASE SERIES
CT was performed with axial imaging using a second-generation, 320×0.5-mm detector row CT unit (Aquilion ONE ViSION Edition; Toshiba Medical Systems, Otawara, Japan). Gantry rotation time: 350 msec. Automatic exposure control (SURE bExposure 3D, Toshiba Medical Systems, SD 150 for non-contrast and SD 110 for contrast-enhanced images). 512 × 512 matrix.
Thickness sections 0.5 mm with 0.25-mm increments using kernel FC03. Iterative reconstruction AIDR3D standard (Toshiba Medical Systems). Intravenous contrast: 50-80 ml Iomeron® 400 mg/ml (Bracco Imaging Italy s.r.l.) with 5 ml/s flow. Intravenous beta blocker (Propranolol) was used to reduce heart rate (target range: 50-60 b.p.m.). Data were transferred to an external workstation (Vitrea2 FX version 6.3, Vital Images, Plymouth, Minnesota, USA) providing multi-planar reformation (MPR), volume rendering technique (VRT) and cine view reconstructions.

CASE #1
80 years old (y/o) male with hypertension and hyperuricemia. He accessed for vertigo and vomiting. Because of slight troponin elevation, he was scheduled for a cardiologic evaluation. Electrocardiogram (EKG) and echocardiography were unremarkable (Ejection Fraction (EF)=58%). A VRT reformation provided by MDCT (Video 1-2) showed a SCA type 1 according to Lipton et al. Significant stenosis at the bifurcation between posterior-lateral (PL) and left circumflex artery (LCx) (95%-Figure 1) and in the first and second tract (77%) of left anterior descending artery (LAD) (Figure 2) were also confirmed by MDCT. Coronary angiography confirmed these findings. The patient was then scheduled for double CABG which was performed 2 months later (left anterior mammary artery-LAD and great saphenous-obtuse marginal branch GS-MO) with good result. Post-operative course was unremarkable. At the moment the patient is asymptomatic with normal biventricular function.

CASE #21
79 y/o male with hypertension and active smoking. He was admitted because of worsening epigastric pain with nausea and weakness. EKG showed ST depression and negative T waves in inferior leads. Given these signs, compatible with NSTEMI, coronary angiography was performed. It showed a SCA originating from the right sinus with a critical stenosis (95%) in the second tract of the right coronary artery (RCA) and a moderate stenosis (50%) in the left main (LM). A drug eluting stent (Xiene Sierra) was then placed in the tract of critical stenosis providing good angiographic results. VRT reformation provided by MDCT allowed to classify this SCA like a type 2 RII-A according to Lipton et al. (Video 3-4) moreover, an anomalous course of LAD anterior to the right ventricular outflow tract as a “T vessel” (Video 3-4) was highlighted by CT. Stent was patent and well positioned (Figure 3). Also in this case MDCT showed multiple eccentric calcific plaques involving the whole vessels’ course determining a residual moderate stenosis in the LM (58%-Figure 4). During post-operative course, the patient
progressively recovered his physical performance and, at the moment, he is asymptomatic with normal biventricular function.

DISCUSSION

Several classifications of coronary anomalies are present in literature and the most suitable for SCA detected by MDCT was proposed by Lipton et al. [5,7], according to location of the ostium, anatomical distribution, course of the transverse trunk.

These two patients, whose SCA originates from the right sinuses, have the rarest coronary anomaly, with a prevalence around 0.02-0.05% in general population [1]. Moreover, the configuration of coronary anatomy of patient 2, with an anomalous course of LAD anterior to the right ventricular outflow tract trunk as a “T vessel”, was described only in one case by Prifti et al. [8]. Although SCA detection is often an incidental finding, diagnosis is important, and its recognition is more common today because of increasing use of MDCT [1]. Coronary CT angiography is even more considered a non-invasive fundamental tool for the diagnosis of coronary artery anomalies. In fact, its multiplanar capability provide precise visualization of the origin, course, and termination of the vessels, clarifying their configurations [1,5]. The high spatial and temporal resolution are also able to determine locations and the characteristic of the atherosclerotic plaques (e.g. soft, calcific, eccentric), quantifying the severity of the stenosis.

The most frequent complications occurring in patients with SCA are sudden cardiac death (SCD) and cardiac ischemia [1,7]. SCD is significantly higher in patients with inter-arterial course of SCA (between aorta and pulmonary trunk), where the “kinking” of the coronary at its origin caused by the distention of the aorta during exercise has been advocated as the principal pathogenic mechanism [8,9]. Anyway, in our two cases inter-arterial course of SCA was carefully ruled out by MDCT. The pathogenic mechanism at the basis of ischemic cardiopathy in patients with this rarer type of SCA is more complex and not well determined. It could be functional, when the single coronary artery becomes insufficient to support myocardial oxygen consumption during exercise, or it could be caused by coronary atherosclerosis [8]. The patients described above had multiple cardiovascular risk factors which justify the finding of diffuse calcific plaques by MDCT. However, it is not clear if the presence of an anomalous vessel increases or not the chances of coronary artery disease [8]. Some studies suggest that anomalous arteries are relatively protected from stenotic disease except for anomalous vessels arising from the right side with a retro-aortic course, which seem to have a greater risk seem to develop earlier and greater atherosclerotic lesions than normal [10]. In our series, coronary angiography
and MDCT detected multiple coronary plaques causing vessel stenosis, but atypical cardiovascular symptoms developed at an older age.

ACKNOWLEDGEMENTS

There is no general agreement and definite indications that favorite surgery vs percutaneous interventions in SCA are lacking. In literature there are only few cases about stenting or CABG in R-SCA patients [8]. In these patients, invasive approaches are more hazardous. Anyway, their success relies on an accurate morphologic description of the anomalous arteries provided by MDCT, in order to recognize all the possible mechanisms of myocardial ischemia and to choose the most appropriate type of treatment [9].

REFERENCES

Figure 1 VRT reformation showing severe stenosis of the tract PL-CX (arrow).

Figure 2 VRT reformation showing moderate-severe stenosis of LAD, second tract
Figure 3 VRT reformation showing the patency of the stent placed

Figure 4 VRT reformation showing moderate stenosis of LM, focusing on “T vessel”

Video 1-2 VRT reformation with (1) and without (2) heart chambers of the SCA type 1
Video 3-4 VRT reformation with (1) and without (2) heart chambers of the SCA type 2 RII-A