
Abstract 

Novel coronavirus disease (COVID-19) has affected nearly 7
million individuals and claimed more than 0.4 million lives to
date. There are several reports of gender differences related to
infection and death due to COVID-19. This raises important ques-
tions such as “Whether there are differences based on gender in
risk and severity of infection or mortality rate?” and “What are the
biological explanation and mechanisms underlying these differ-
ences?” Emerging evidences have proposed sex-based immuno-
logical, genetic, and hormonal differences to explain this ambigu-
ity. Besides biological differences, women have also faced social
inequities and economic hardships due to this pandemic. Several
recent studies have shown that independent of age males are at
higher risk for severity and mortality in COVID-19 patients.
Although, susceptibility to SARS-CoV-2 was found to be similar
across both genders in several disease cohorts, disproportionate

death ratio in men can be partly explained by the higher burden of
pre-existing diseases and occupational exposures among men. At
immunological point of view, females can engage a more active
immune response, which may protect them and counter infectious
diseases as compared to men. This attribute of better immune
responses towards pathogens is thought to be due to high estrogen
levels in females. Here we review the current knowledge about
sex differences in susceptibility, the severity of infection and mor-
tality, host immune responses and role of sex hormones in
COVID-19 disease. 

Introduction

Novel coronavirus disease (COVID-19) that emerged in
Wuhan China during December 2019, was declared as a pan-
demic by the World Health Organization (WHO) on 11th March
2020 [1]. COVID-19 is caused by severe acute respiratory syn-
drome coronavirus-2 (SARS-CoV-2), a single-stranded RNA
virus that belongs to the Betacoronavirus genus of
Coronoviridae family [2]. As of 10th June 2020, COVID-19 has
infected more than 7 million individuals claiming 0.4 million
deaths worldwide [3]. One of the key risk factors for disease and
death due to COVID-19 is sex. Previous epidemics of coron-
aviruses such as the severe acute respiratory syndrome (SARS)
and the Middle East respiratory syndrome (MERS) also reported
worse clinical outcomes among the male sex [4,5]. Series of ani-
mal experiments have proven the increased susceptibility of
males to SARS and MERS infections with a degree of severity
further increasing with advancing age [6]. 

Sex disaggregated data is essential to understand sex differ-
ences in severity and mortality in the current pandemic as well.
Public health policies need to address the sex impact of this pan-
demic so that targeted interventions can be implemented. Women
seem to have a similar risk of COVID-19 infection, with conflict-
ing evidence from different sub-groups of population and different
countries. But there is consistent evidence of higher death rates
recorded among men compared to women. Emerging evidence has
proposed sex-based immunological and hormonal differences to
explain these differences. Gendered differences, such as the preva-
lence of smoking and other co-morbidities also explain differ-
ences in mortality.

These sex-based differences in COVID-19 need a deeper
understanding of the basic difference between the two sexes.
Herein, we have comprehensively reviewed the scientific litera-
ture on sex differences in COVID-19, in terms of their epidemi-
ological, immunological, and hormonal responses. Moreover,
implications of the immune differences between both the sexes
on vaccine and other treatment modalities have also been dis-
cussed.
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Sex differences in COVID-19: susceptibility,
severity and mortality

Several recent studies have shown that gender is a risk factor
for severity and mortality in patients with COVID-19, especially
the male gender, independent of age (Figures 1 and 2). The number
of men is 2.4 times that of women in the deceased patients [7]. In
six countries (China, France, Germany, Iran, Italy, South Korea)

reporting mortality by sex, the proportion of deaths among con-
firmed cases is higher in men than women, the difference is greater
than 50% in four of these countries (China, Italy, France and South
Korea). An observational study from Wuhan found that males over
the age of 50 years with non-communicable diseases are at highest
risk of dying from COVID-19 [8]. However, many countries have
not yet released their sex-disaggregated data, especially country
like the United States of America having the highest number of
cases in the world. 

                             Review

Figure 2. Sex differences in COVID-19 mortality across different countries. Source: Global Health 50/50 (https://globalhealth5050.org/covid19/).

Figure 1. Sex differences in COVID-19 cases across different countries. Source: Global Health 50/50 (https://globalhealth5050.org/covid19/)
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This disproportionate death ratio in men can be partly explained
by the higher burden of pre-existing diseases (i.e., hypertension, dia-
betes, and chronic lung disease), higher risk behaviors (i.e., smoking
and alcohol use), and occupational exposure among men [9,10].
Behavioral and social differences suggesting that women are more
likely than men to follow hand-hygiene practices and seek preven-
tive care are believed to be protective for women [11,12] Previous
epidemics of coronaviruses such as the severe acute respiratory syn-
drome (SARS) in Hong Kong and the Middle East respiratory syn-
drome (MERS) also reported worse clinical outcomes among the
male sex. Coronaviruses including SARS-CoV-2 seem to less com-
monly affect children and cause fewer symptoms and less severe dis-
ease in this age group compared with adults, and are associated with
much lower case-fatality rates [13]. However, gender disaggregated
data is limited in this age group. Besides severity and mortality, sus-
ceptibility to SARS-CoV-2 was found to be similar across both gen-
der in several disease cohorts [7,9]. These differences in susceptibil-
ity, severity and mortality across gender could be attributed to
immunological, hormonal and genetic differences which have been
explained below [14,15]. 

If we look at the social aspect, women tend the bear the brunt of
the pandemic. Women form a large share of the health care sector,
and as home and family caregivers, which makes them more
exposed to the virus. Inequities disproportionately affect the wellbe-
ing and economic resilience of the female sex during lockdown.
Also, the complete shift in the priorities of the health system in

addressing this pandemic has disrupted key health services for
women and girls, such as reproductive and sexual health services.
Pregnant women can be particularly vulnerable in this context. With
strained economic resources, girls are likely to be deprived of edu-
cation. Women are likely to experience a significant burden of
household work including child care, elderly care and care of the
sick. An increase in gender-based violence (and its severity and fre-
quency) due to confinement has been observed across countries [16]. 

SARS-CoV-2 infection and host responses

Most of the viral infections are tackled well by the host
immune system. However, some viral properties allow the infec-
tion to persist in the host. The knowledge of viral structure and
genome is essential to understand these aspects of virology. Like
other betacoronaviruses, SARS-CoV-2 has an outer envelope
encapsulating the viral genome (Figure 3a). Genomic analysis has
shown that SARS-CoV-2 has 79.6% sequence identity to SARS-
CoV and 96% identity with bat coronavirus (BatCoV RaTG13)
[17,18]. The viral genome encodes for replicase and viral structural
proteins like spike protein (S), nucleocapsid (N), membrane pro-
tein (M), and envelope protein (E). Life cycle of SARS-cov2 in the
host involves five steps: viral binding/entry, fusion, translation,
assembly and release [19]. Viral entry into the host cell is mediated
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Figure 3. a) Diagrammatic representation of the structure of SARS CoV; SARS CoV-2 has outer envelope encapsulating the viral
genome. Spike and membrane protein are embedded in the envelope. b) Immunes responses to COVID-19; decreased T cell count and
uninhibited proinflammatory response is seen in severe disease. c) Gender biased immunity in COVID-19: females have better immune
responses to viral infection and the Th2 bias reduces the pro-inflammatory cytokines.
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by spike glycoprotein (S) that is embedded in the capsule. S pro-
tein has two subunits S1 and S2. The S1 subunit has a receptor
binding domain (RBD) which attaches to ACE2 on the host cell
[20]. Indeed, SARS CoV-2 has 10 times more affinity for ACE2
receptor than SARS- CoV [21] and the expression of ACE2 in
epithelial cells of lung explains the lung damage seen in severe
COVID-19 infection [22]. A cellular serine protease TMPRSS2
and endosomal cysteine proteases cathepsin B and L expressed on
host cells mediates S protein priming [23]. This interaction triggers
a conformational change in S protein that helps in endocytosis of
the virus [23]. S2 subunit helps in membrane fusion and release of
viral RNA into the cytoplasm [20]. The viral genome translates
replicase polyproteins that subsequently get cleaved and assem-
bled with other cellular proteins to form replicase transcriptase
complex [24]. The complex helps in viral protein translation fol-
lowed by viral assembly and release. Subsequently the mature
viruses are released into the host system leaving behind a pyroptot-
ic cell that triggers an immune mechanism in the host body [25].

The COVID-19 infection can be divided in different stages:
Stage 1 (asymptomatic), Stage 2 (upper airway and conducting air-
way response) and Stage 3 (hypoxia, ground glass infiltrates, and
progression to ARDS) [26]. Low pathogenic strains of SARS-
CoV-2 cause mild upper respiratory infection while highly patho-
genic strains cause severe infection especially in patients with
impaired immune system [27]. The immune response to COVID-
19 is divided in two phases. During Phase 1, specific adaptive
immunity helps in elimination of virus in early and mild cases.
Phase 2 is seen in severe cases where damaged pyroptotic cells
induce pulmonary inflammation mediated by pro-inflammatory
cells and subsequent cytokine storm that may also lead to multior-
gan failure [28]. Innate immunity detects viral components through
pattern recognition receptors (PRRs) like toll like receptors
(TLRs), retinoic acid inducible genes like receptors (RLRs), NOD
like receptors (NLRs) and cytosolic DNA sensors [29]. TLRs and
RLRs are responsible for the production of Type 1 Interferon,
proinflammatory cytokines and chemokines and stimulates the
production of CD40, CD80 and CD86 [30]. Recognition of SARS-
CoV-2 proteins by TLRs leads to release of proinflammatory
cytokines like interleukin (IL)-1β and IL-6. TLR7 and TLR8 rec-
ognizes ssRNA while TLR 2 mediates recognition of S protein
[31,32]. NLRs are responsible for production of Interleukin-1
Beta, through the activation of caspase-1 [33]. Type 1 interferons
and complement proteins help in limiting the spread of virus dur-
ing early stages of infection. IFNs-α/β thus are ideal candidates for
antiviral therapy in viral infection like COVID-19 [34]. Indeed,
inhaled IFN-α2b therapy has been shown to reduce duration of
viral shedding and inflammatory markers IL-6 and CRP in
COVID-19 [35]. In case, if viral replication outpaces innate immu-
nity, the second line of defense “adaptive immunity” comes into
play. Adaptive immune response mainly consists in antibody-pro-
ducing B cells and cytotoxic T cells that destroy virus-infected
cells. Increased neutrophil-to-lymphocyte ratio and marked lym-
phopenia with decreased T cells have been documented in severe
COVID-19 [36]. Thus, SARS CoV-2 damages the T lymphocytes
impairing the adaptive immune response while the dysregulated
innate immune response leads to excessive inflammation and
cytokine storm [36]. Proinflammatory cytokines like IL2, IL 6,
IL8, IL10, GCSF, IP10, MCP1, MIP1A, and TNFα are increased
in COVID-19 cases [37]. IL 6 and IL 10 upregulate expression of
NK group 2 member A (NKG2A) receptor while IL 6 and 8 impair
NK cells function [38,39]. Further, enhanced NKG2A expression
functionally exhausts CD8+ cells and NK cells in severe cases
leading to severely compromised innate immune response [40]. 

Gender biased immunity and COVID 19

The sex-wise demographics across the world depicts that in
some countries, males are more susceptible to COVID-19 than
females, while females are more infected than males in other coun-
tries (Figure 2a) [9,41]. Many countries (Scotland, England,
Netherland, Italy, Sweden, Belgium) have reported higher mortal-
ity rate in men as compared to women among the confirmed cases
of COVID-19 (Figure 2b). Prevalence and severity of viral infec-
tions differs depending upon biological factors like age, sex and
immune status. Sexual dimorphism forms the basis for variant
anatomical, physiological and immunological responses. Sex dif-
ferences in disease outcomes following virus infections could be
attributed to X-linked genes, production of sex-dependent steroid
hormones, and the presence of disease susceptibility genes in
males and females [14]. 

X-chromosome contains a high density of immune-related
genes; therefore, women generally mount stronger innate and
adaptive immune responses than men [42]. X chromosome con-
tains largest number of genes that regulate immune system.
Females have advantage of having 2 X chromosomes offering
them 2 allelic options for these genes. Mosaicism due to X inacti-
vation also offers immune advantage to female over males [43].
Indeed, X chromosomal variation has been shown to increase the
survival in HIV infection [44]. While genetic variation in Y chro-
mosome is involved in susceptibility of males to viral infection
[45]. X chromosome inactivation in females is not uniform across
all the immune cells and there are chances of bi-allelic expression
of genes. Since the X chromosomes comes from different parent it
offers more immune diversity in females as compared to males
[43]. This results in faster clearance of pathogens but also con-
tributes to their increased susceptibility to inflammatory and
autoimmune diseases.

The rule of ‘sexual dimorphism’ is followed by both innate and
acquired immunity. It has been identified that male gender is more
prone to all infections such as bacterial, viral and fungal. The
increased infection rates with reduced immune response in males is
probably a side effect of sex-specific positive selection process that
gives more weightage to reproductive functions than immunity [46].
In one study related to HIV infection, it was identified that viral load
in females is 40% less as compared to males [47]. Females tend to
have higher innate and adaptive immune responses to viral infection
[48]. Females have lower levels of IL-8 and C-X-C motif chemokine
10 (CXCL10) than males during an acute viral infection [49]. These
chemokines attract cells like neutrophils, macrophages, T cells, NK
cells, and dendritic cells at the infected site further augmenting the
immune response. High levels of CXCL10 are seen in severe
COVID-19 cases with lung damage [50]. Furthermore, anti IL8 ther-
apy trial is been tried as treatment modality for COVID-19 [51].
Higher levels of IL 6, a pro inflammatory cytokine linked with exac-
erbation of viral disease, in seen males as compared to female mice
following lipopolysaccharide challenge [52]. Thus, using tocilizum-
ab an IL6 receptor blocker can be beneficial in reducing severity in
COVID-19 [53]. Innate immunity of a male and a female are very
different suggesting a germline evolution. For example, TLR7 has
lower gene expression in males than females [54]. This results in
increased IFNα production following exposure to TLR7 ligands in
women compared to men [55,56]. Previous reports have also sug-
gested that gene expression related to TLR or inflammatory pathway
are always higher in females than males, which suggest that females
are much more capable or stronger to combat the infectious diseases
[57,58] Previous research has also revealed that men have lower
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innate antiviral immune responses to a range of infections including
hepatitis C and HIV [48] Antigen presentation efficiency of females
are far much better than their counterparts [14] Except for natural
killer (NK) cells, females also have highly active macrophages and
neutrophils [59]. Females exhibit higher expression of TLRs 3, 7 and
9 which can recognise viral RNA or DNA [54,60]. However, TLRs
2 and 4 which have higher expression in males, only attach to bac-
terial cell wall proteins [61,62]. These dimorphic innate immune
responses can certainly be attributed to different sex steroids [57].

Similar to innate immunity, adaptive immunity also is influ-
enced by gender (Figure 3 b,c). Females tend to have a higher
number of T helper cells as compared to males who have increased
counts of cytotoxic T cells [63]. Moreover, after stimulation
women produce larger quantities of activated CD4+ and CD8+ T
cells [64,65]. Previous studies have also observed an increased
expression of antiviral (such as IFNG, SPINK5 and RIGI) and pro-
inflammatory (IL16, IL1F5 and CXCL2) genes in females com-
pared to males [66]. Notably, various lymphoid tissue cells, lym-
phocytes, macrophages, and DCs express estrogen receptors.
Antibody responses of females are also better than males as they
have a higher number of B cells and increased basal levels of
immunoglobulins [64,67,68]. Females generally exhibit higher
Th2 response to viral infection as compared to males [63]. Thus,
by mounting an effective adaptive response at the same time limit-
ing the pro-inflammatory mediators protects the females from
developing severe disease. 

Role of sex hormones in COVID-19

Sex hormones also play a vital role in regulation of immune
response to infection. Male sex hormone i.e. testosterone has
immunosuppressive effects, on the contrary the estrogen (female
sex hormone) is known for its immunoenhancing effect [69]. Such
differential regulation of immunity by sex hormones provides an
evolutionary advantage for survival during reproductive years.
Estrogen receptors are expressed on various immune cells like
dendritic cells, macrophages, B and T lymphocytes. The two sub-
types of estrogen receptors ER-alpha and ER-beta are differential
expressed on T and B cells respectively. Estrogen via its surface
receptors has been shown to be influence the downstream signal-
ing pathways of innate immunity ad adaptive immunity. Various
experiments on mice models suggest that estrogen signaling pro-
tects female mice from severe/fatal forms of infection [6].
Estrogen increased the activity of NK cells and in high doses
reduces the secretion of pro-inflammatory cytokines from mono-
cytes and macrophages [69]. Estrogens inhibits the production of
Th1 mediated proinflammatory cytokines and stimulates the pro-
duction of Th2 mediated anti-inflammatory cytokines [70].
Furthermore, varying levels of estrogen during menstrual phase
also influence immune response with shift towards Th2-type
response seen during luteal phase [71]. Low levels of estrogen dur-
ing menstruation enhances the activity of proinflammatory
cytokines while increased levels of estrogen during follicular
phase suppresses these cytokines [71]. Estrogen treatment has been
shown to reduce the inflammatory reaction and decrease viral load.
Thus, conjugate estrogens that have similar action to endogenous
estrogen provide a promising therapy option for both gender in
COVID-19 [72]. Estrogen also helps in B cell development and
antibody response to infection. Several genes required for B cell
activation and survival are up regulated by estrogen [73]. High lev-
els of estrogen just before ovulation positively correlates with B

cells count and antibody levels [74]. Thus, estrogen in post puber-
tal females provides an added advantage in reducing unwarranted
inflammation during acute viral infections. 

Since both immunity and reproduction are energy consuming
processes the nature has decided to be sex biased with males uti-
lizing more resources for reproduction than immunity. High levels
of testosterone and dihydrotestosterone levels in post pubertal
males are generally immunosuppressant in mammals. Androgens
mediate immunosuppression by reducing the activity of NK cells
and macrophages. Testosterone decreases pro-inflammatory
cytokine mediators while increasing the anti-inflammatory media-
tors like IL-10 and transforming growth factor β (TGFβ) [75]. A
recent study found that most of the critical ill COVID 19 patients
suffer from testosterone and dihydrotestosterone deficiencies [76].
Thus, the immunosuppressant effects of androgens are reduced in
severe cases. Indeed, low levels of testosterone are linked with
increased level of inflammatory cytokines, reduced T regulatory
cells and increased NK cell activity [75]. Moreover, testosterone
therapy has been shown to improve the survival rate in young
gonadectomized male mice infected with influenza [77]. However,
such therapy does not alter the viral replication or pulmonary
pathology. Since, androgen receptor activity is important is regula-
tion of TMPRSS2 and also for ACE 2, receptors that helps in
SARS-Cov2 entry into the host cell [78,79]. Low testosterone lev-
els lead to up regulation of androgen receptors that may augment
the expression of ACE2 and TMPRSS2 receptors on host cells. 

Implication of gender differences on COVID-19
vaccine and treatment modalities

Sex and gender have an important role to play in vaccine
responses and outcomes [58]. Females, once vaccinated, develop
higher antibody responses to vaccines than males. Vaccination
against influenza, yellow fever, rubella, measles, mumps, hepatitis
A and B, herpes simplex 2, rabies, smallpox, and dengue viruses
have reported protective antibody responses twice as high in adult
females than in males [58]. Cell-mediated immunity following
vaccination are also higher in females than in males for some vac-
cines [80,81]. Females also develop more frequent and severe
adverse reactions due to enhanced immune activation and inflam-
matory responses to vaccines compared to their male counterparts
[58,68]. Because reporting of adverse events following vaccination
is often done via passive reporting, it is also believed that differ-
ences in reporting might reflect a gender difference, in which
females might be more likely than males to report adverse side
effects. Sex and gender also interact to alter vaccine responses and
outcomes by affecting exposures to microbial infection, our diet,
and even the composition of our microbiome, each of which can
affect vaccine responses and efficacy [82]. Thus, men and women
tend to react differently to potential vaccines and treatments, so
having access to sex-disaggregated data is crucial for conducting
safe clinical/vaccine trials. 

Potential immunotherapy like plasma therapy, specific
immunoglobulins, thymosin and tocilizumab are widely being
used or tested for COVID-19. However, given the differential
immune response and related severity in both the sexes, sex-disag-
gregated data needs to be collected for these immunotherapy to
better understand COVID-19 immunopathology. The primary drug
being used to treat COVID-19 patients is hydroxychloroquine
(HCQ) which works by suppressing immunity. We know that men
and women differ in their immune responses, but we don’t know
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how sex differences influence the efficacy of HCQ, or whether
sex-specific dosing might produce fewer side effects and more
positive outcomes. This calls for further research.

Conclusions 

The immune response for any foreign pathogen is different
among male and females. Evolutionary selection has given an
immunological advantage to females promoting their survival in
adversity. The observed sex differences in severity against viral
infection can be attributed to immune variation due to X chromo-
some, production of sex-dependent steroid hormones, and varia-
tion in prevalence of co-morbidities. Females are protected from
developing a severe viral infection by mounting an effective innate
and acquired immune response while at the same time limiting the
pro-inflammatory cytokines. Estrogen and its cyclic variation dur-
ing the menstrual cycle helps in maintaining an immune-enhanced
state during viral infection; while low testosterone levels in males
fail to suppress the cytokine storm. Vaccine and immunotherapy
for COVID-19 need to consider these sex-based immune differ-
ences and there is urgent need of in-depth research studies to
understand the sex-bias observed in coronavirus infections. 
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