Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. The Monaldi Archives for Chest Disease is, therefore, E-publishing PDF files of an early version of manuscripts that undergone a regular peer review and have been accepted for publication, but have not been through the copyediting, typesetting, pagination and proofreading processes, which may lead to differences between this version and the final one. The final version of the manuscript will then appear on a regular issue of the journal. E-publishing of this PDF file has been approved by the authors.

Monaldi Arch Chest Dis 2021 [Online ahead of print]

To cite this Article:
Medical thoracoscopy without pleural fluid: How I do it

Mario Tamburrini¹, Unnati Desai², Giovanni Fanti³, Angelo Scarda³, Francesca Zampieri³, Umberto Zuccon³, Parikshit Thakare², Marco Contoli⁴, Alberto Papi⁴

¹UOC Pneumologia, Arcispedale Sant’ Anna, Azienda Ospedaliero-Universitaria di Ferrara, Italy.

²Department of Pulmonary Medicine, TNMC & BYL Nair Hospital, Mumbai, India. Email:

³ASFO Azienda sanitaria Friuli Occidentale, Pordenone, Italy. Email:

⁴Respiratory Medicine University of Ferrara, UOC Pneumologia, Arcispedale Sant’ Anna, Azienda Ospedaliero-Universitaria di Ferrara, Italy

Corresponding Author: Dr Mario Tamburrini, Interventional Pulmonologist, UOC Pneumologia, Arcispedale Sant’ Anna, Azienda Ospedaliero-Universitaria di Ferrara, Italy. Tel. +39.349.0091667. E-mail: mario.tamburrini@ospfe.it

Key words: Pleural effusion, pleuroscope, thoracoport

Contributions: MT, GF and UZ were involved in patient management. MT, UD, AS, FZ, PT, MC and AP did the literature search and wrote the manuscript.

Funding: The authors don’t have specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: None declared.

Abstract

Thoracoscopy is commonly used minimally invasive procedure in the field of interventional pulmonology. While medical thoracoscopy is the widely preferred modality, modifications to the technique and expansion in the scope of its utility have always challenged the conventional
approach. We describe a modified technique of medical thoracoscopy in absence of pleural effusion also known as dry thoracoscopy under sedation and local anaesthesia.

Introduction
The availability of pleuroscope and medical thoracoscopy has revolutionised work up and care of pleural effusions of varied etiologies. Conventionally, medical thoracoscopy is performed in the presence of pleural effusion. However, modifications to the said technique have been attempted to expand the scope of medical thoracoscopy in pleural malignancies which often have pleural nodularity with pleural thickening and minimal pleural effusion. This procedure of medical thoracoscopy in absence of pleural effusion also referred to as Dry thoracoscopy has been described rarely and first by Marchetti. They however performed the procedure under general anaesthesia. We modified the procedure in lieu with the advances and availability of newer techniques, equipment and anaesthesia. We describe the unique procedure of dry thoracoscopy under local anaesthesia and sedation.

Case Report
A 76-year-old ex-smoker (30 pack years), diabetic, hypertensive with chronic kidney disease was referred with left chest pain, left minimal pleural effusion with pleural thickening which is confirmed on the chest X ray (CXR) and computed tomography (CT) of thorax. A positron emission tomography (PET) scan was performed in view of the non-tappable pleural effusion to determine further course of action which showed an uptake in the left lower thickened pleura (Figure 1). The patient was evaluated for the possibility of performing ultrasound percutaneous biopsies but the small size of the pleural lesions and the presence of the ribs made the procedure difficult to perform.

The patient was posted for medical thoracoscopy in absence of pleural effusion also known as dry thoracoscopy under local anaesthesia and moderate sedation in view of multiple comorbidities and high risk for general anaesthesia.

Thoracoscopy procedure details
The site was selected using clinico-radiological correlation in the safe triangle of the chest. The lung sliding sign was confirmed on ultrasound to determine the site of entry with the patient in the right lateral decubitus position. Parts were painted and draped. The procedure was performed under moderate sedation with the use of fentanyl, midazolam and propofol. Local
anaesthesia was instilled at the site of thoracoport insertion. A 5 mm skin incision was taken at
the site of entry. The 5mm thoracoport of make Endopath eXcel 5 mm bladeless trocar with
stability sleeve was inserted with the zero degree camera lens insitu thru the site with rotary
action under camera vision till the white pleura was breached (Figures 2 and 3, Video 1).
Following the entry into the pleura, iatrogenic artificial pneumothorax was created by allowing
the atmospheric air to enter the thoracic cavity. This caused collapse of the lung to allow further
thoracoscopy procedure. On thoracoscopy the parietal pleura was visualised as diffusely
thickened with whitish nodules in the mediobasal and diaphragmatic aspects with few nodules
in the mediastinal pleura. Lung was diffusely anthractic. Multiple biopsies (with 3mm optic
biopsy clamp strut) were performed on the thoracic pleural surface without obvious bleeding.
Following procedure, talc pleurodesis was performed and an intercostal drain inserted through
the entry site. The biopsy proved adenocarcinoma on histopathology.

Discussion
In 1882 coinciding with the discovery of the tubercle bacilli, Forlanini performed the first
"pneumotorace artificiale" in tuberculosis (TB). From 1910-1922, Hans Christian Jacobaeus
performed the closed intrapleural pneumonolysis using a two canula technique labelling it as
thoracoscopy since artificial pneumothorax prevented successful treatment in all TB patients.
Hence he is known as the father of modern thoracoscopy. Following this Jacobaeus technique
was widely used as operative thoracoscopy till the advent of streptomycin in 1945. In the anti-
TB drug era, the therapeutic need of thoracoscopy declined and biopsy remained the only
indication. Video-assisted thoracoscopy (VATS) and the wide range of operating instruments
and stapling devices developed again, brought thoracoscopy to the fore of thoracic surgery.
Though this technique remained a surgeons fortay [1,2].

Thoracoscopy is a diagnostic and therapeutic procedure for pleural pathologies. It is further
classified into medical thoracoscopy and surgical thoracoscopy. Medical thoracoscopy is
thoracoscopy performed under anaesthesia in the endoscopy suite performed mostly by a
pulmonologist. In contrast, VATS is described as a keyhole surgical procedure in the operating
room, under general anaesthesia with one-lung ventilation performed mostly by a cardio-
thoracic surgeon. Medical thoracoscopy was discovered to be minimally invasive alternative
to cover the diagnostic aspects while surgical thoracoscopy was already available to cover the
therapeutic aspects. The most frequent indication for diagnostic thoracoscopy is pleural
effusion, pleural nodularity with effusion and rarely spontaneous pneumothorax to identify the
cause of the pneumothorax. The most frequent indication for therapeutic thoracoscopy is
pleurodesis (mostly chemical) followed by rarer indications like bullectomy, pulmonary biopsy and pulmonary resection. Several instruments and alternatives have been used for thoracoscopy. Thoracosopes are divided into rigid and flex-rigid/semi-rigid. Rigid scopes have been conventionally used, however literature suggests equal safety and efficacy of the flex-rigid scopes [2,3]. The thoracoscopy technique in relation to incision, point of entry, single versus double points of entry, anaesthesia utilised have been studied with various deviations as per the pulmonologists or surgeons and institute preferences. Minithoracoscopy defined as thoracoscopy with instruments of a diameter between 2 and 5 mm has been described by Marchetti et al as a complementary to the standard technique however requiring two separate small points of entry [4,5]. The same group have improvised and broadened the horizon of thoracoscopy in absence of pleural effusions with ultrasound guidance of the echocardiographic sliding sign without inducing a pneumothorax [6]; if this procedure has been recently underlined, it is an old procedure developed by several authors as Boutin, Tschopp, Noppen and others in patients with pleural tumors without pleural effusions or very few pleural fluid and also, and in particular, for sympathectomy (mainly for the treatment of hyperhidrosis). It was before the era of CUS and the artificial pneumothorax, which is the main point in this situation, was usually induced the day before the procedure to check the feasibility of the procedure. Thanks to the CUS and the presence of the 'sliding sign' making this step safer. In our case we describe the novel type of deviation for thoracoscopy in absence of pleural effusion. This procedure differed from that described by Marchetti et al as we used a zero degree camera lens with the thoracoport and single point of entry with induction of iatrogenic pneumothorax. The use of general versus local anaesthesia has been debated in literature. Use of only intrapleural anaesthesia has also been studied [7]. While most procedures are described under general anaesthesia, our technique deviated here in using local anaesthesia with moderate sedation.

Conclusion

Thus this modified technique of dry thoracoscopy using zero degree camera lens with the thoracoport using local anesthetic agents with moderate sedation can be used effectively to manage such cases on a day care basis with early patient recovery and early post procedure discharge.
References

Figure 1. PET CT image.
Figure 2. Image of the parts of thoracoport (A&B) and the camera lens (C).
Figure 3. The assembly of the thoracoport and the camera lens ready to use for procedure.

Video 1. Video demonstrating the technique of thoracoport insertion.