Difference in prevalence of exertional oscillatory ventilation between healthy subjects and patients with cardiovascular disease

Ugo Corrà¹, Massimo Piepoli², Andrea Giordano³

¹Division of Cardiology, ICS Maugeri, Institute of Veruno; ²Heart Failure Unit, Cardiology Department, Polichirurgico Hospital G. Da Saliceto, Piacenza; ³Bio-engineering Service, ICS Maugeri, Institute of Veruno, Italy

Abstract

Exercise oscillatory ventilation (EOV) is an ominous sign in heart failure due to reduced left ventricular ejection fraction (HFrEF) whatever it is represented. But EOV is detected also in normal healthy individuals and in other cardiovascular disease (CVD) patients, however, its prevalence in these is not completed clear. The aim was to describe the occurrence of EOV in healthy subjects and the overall population all CVD patients who performing symptom-limited cardiopulmonary exercise testing (CPET). Healthy subjects were divided in athletes and normal subjects, while, CVD patients were subdivided into: i) those with preserved left ventricular ejection fraction (LVEF); ii) those with mild to moderate impairment of LVEF (41-49%); iii) those with severe impairment of LVEF (≤40%); iv) HFrEF or with preserved LVEF (HFpEF); and iv) patients after heart transplantation (HXT). EOV was observed only in CVD patients and in those with depressed LVEF; the prevalence of EOV was observed 1.9% (3/55) those with mild to moderate impairment of LVEF (41-49%), 3.4% (56/1613) those with severe impairment of LVEF (≤40%), and 7.3% (214/2903) in HFrEF); no EOV was observed in CVD with preserved LVEF. Kremser’s EOV occurrence can modify prognostic-decision models. Even though, EOV prevalence was derived from largest single center population, more studies are needed to tackle the EOV prevalence in different CVD conditions and in normal subjects.

Introduction

Exercise oscillatory ventilation (EOV) is an atypical exertional respiratory response [1], characterized waxing and waning in ventilation (VE). EOV is frequently detected in heart failure due to reduced left ventricular ejection fraction (HFrEF) [2,3], and it is an ominous sign, whatever it is represented [3]. EOV is discovered also in normal healthy individuals [4] and in other cardiovascular disease (CVD) patients [5]. Though, EOV prevalence is not clear, yet.

The principal aims of this study were 1) to describe the occurrence of EOV in the overall population, healthy subjects and CVD patients, with or without history of heart failure (HF), performing symptom-limited cardiopulmonary exercise testing (CPET) 2) to assess of EOV prevalence in HFrEF, and resting factors that might predict this abnormal respiratory phenomenon.

Patients and Methods

Data source

This was a retrospective study of data collected prospectively for prognostic assessment purposes; here, follows data on EOV
prevalence. The study was based on patient medical records from the ergo-spirometry laboratory of the Istituti Clinici Scientifici Maugeri, IRCCS Scientific Institute of Veruno (NO), Italy; CPET data were recruited from September 15, 1995 to December 31, 2016 (12 years). All records originated from the ergo-spirometry laboratory of Veruno, and, subjects’ and patients’ documents and statistics were, anonymously, used. A note was kept about demographic, clinical, echocardiographic parameters, as well as about pharmacological treatment.

The study was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki). An informed written consent was obtained from all participants, one month after surgery.

For CVD patients a 10 Watts every one minute was arranged. For healthy subjects, a 20 Watts, every one-minute ramp protocol was managed, 60 seconds of the test, while the relationship between ventilation (VE) and carbon dioxide (VCO2) was computed as a linear regression function from the whole exercise period (VE/VCO2 slope), and percentage of predicted peak VO2 (VO2%) was processed, according to Wasserman et al.’s formula [9]. In the post-test phase, VE (L/min.) was displayed on an expanded time scale, and EOV was launched, applying Kremser et al.’s criteria [10]. We traditionally adopted Kremser’s method (mainly for outcome reasons, in HFrEF patients); we persisted to use this procedure to harmonize CPET data. This method implies i) cyclic fluctuations in VE lasting longer than 66% of the whole exercise duration, and ii) amplitude of each single VE oscillation more than 15% of the average value at rest. A typical EOV pattern is shown in Figure 1.

Blood pressure was measured manually at rest, every 3 min during incremental exercise, and at peak of exercise, while electrocardiogram and heart rate were monitored at rest and throughout exercise with at 1-min intervals. All CPETs were conducted on medical therapy.

CPET results were interpreted and revised by experienced and qualified cardiologists.

Study population

Healthy subjects performed symptom-limited CPET for functional assessment, while, for CVD patients, CPET was executed for both functional and prognostic estimations. Those with HF were categorized, in order to the history or recent (<3 months) existence of signs or symptoms of HF, as described ESC guidelines [6]. CVD patients were subdivided, according left ventricular ejection fraction (LVEF) and symptoms/signs of HF. They were classified as follows: i) those with preserved left ventricular ejection fraction (LVEF=≥50%), those with mild to moderate impairment of LVEF (41-49%), and those with severe impairment of LVEF (≤40%); all above-mentioned patients had no HF symptoms or signs, ii) HF patients (these patients were characterized to have had symptoms or signs of HF; according ESC guideline) with reduced LVEF (HFrEF) or with preserved LVEF (HfP EF), iii) patients after heart transplantation (HXT). HXT patients were evaluated one month after surgery.

Exclusion criteria were: 1) myocardial infarction, myocardial revascularization or unstable angina, one month before the study; 2) ventricular arrhythmias induced by exercise (sustained ventricular tachycardia or fibrillation); 3) severe aortic valvular stenosis; 4) concomitant diseases that might limit the exercise capacity assessment (either in healthy subjects or CVD patients); 5) cardiac strategies scheduled; 6) unwillingness to provide informed consent.

Eligibility criteria were: 1) the ability to perform a CPET, limited by fatigue or dyspnea, with a peak respiratory exchange ratio (RER) ≥1.00 [7], and 2) for CVD/HFrEF patients, clinical/pharmacological stability 1 month before CPET.

Cardiopulmonary exercise testing

CPET was performed on a bicycle ergometer with a ramp protocol for all, healthy subjects and CVD patients. For healthy subjects, a 20 Watts, every one-minute ramp protocol was managed, while for CVD patients a 10 Watts every one minute was arranged. The CPET was conducted with breath-by-breath respiratory gas exchange (Sensormedics, Vmax 29, Yorba Linda, CA, USA).

Peak VO2 was recorded as the mean value of VO2 during the last 60 seconds of the test, while the relationship between ventilation (VE) and carbon dioxide (VCO2) was computed as a linear regression function from the whole exercise period (VE/VCO2 slope) [8], and percentage of predicted peak VO2 (VO2%) was processed, according to Wasserman et al.’s formula [9]. In the post-test phase, EOV (L/min.) was displayed on an expanded time scale, and EOV was launched, applying Kremser et al.’s criteria [10]. We traditionally adopted Kremser’s method (mainly for outcome reasons, in HFrEF patients); we persisted to use this procedure to harmonize CPET data. This method implies i) cyclic fluctuations in VE lasting longer than 66% of the whole exercise duration, and ii) amplitude of each single VE oscillation more than 15% of the average value at rest. A typical EOV pattern is shown in Figure 1.

Blood pressure was measured manually at rest, every 3 min during incremental exercise, and at peak of exercise, while electrocardiogram and heart rate were monitored at rest and throughout exercise with at 1-min intervals. All CPETs were conducted on medical therapy.

CPET results were interpreted and revised by experienced and qualified cardiologists.

Echocardiographic evaluation

Trans-thoracic echocardiograms were performed within 4-6 days of CPET, and LVEF and trans-mitral deceleration time (DecT.) were calculated as described [11].

Statistical analysis

Continuous data was expressed as means ± standard deviation (SD). Student’s t-test for non-paired values was used to compare the means of groups for quantitative variables. For qualitative variables, the χ2 test with Yates’ correction or Fisher’s exact test, if necessary, was employed. Logistic regression univariate and multivariable analysis for EOV was performed in HFrEF; for multivariable inquiry, we used significant resting variable at univariate analysis. The level of statistical significance was set p-value <0.05.
All calculations were performed using the STATA®10 system (StataCorp, College Station, TX, USA).

Results

We screened 5741 CPETs: 834 patients were excluded, because due to other limiting symptoms than other than fatigue or dyspnea (n=197), peak RER lower <1.00 (n=439), clinical/pharmacological stability not accomplished (n=198). The remaining 4907 CPETs formed the study population: 14 CVD patients had a LVEF ≥50%, 157 CVD patients had LVEF between 41-49%, and 1613 CVD patients showed a LVEF ≤40%. HFrEF and HfP EF patients were 2903 and 55, respectively. Finally, HXT patients were 101 recipients (Table 1). Moreover, 64 healthy subjects (of these 35 were athletes) were screened. Overall, EOV was observed in 273 patients, 5.5% of total population: 1.9% in CVD patients with mild to moderate impairment, in 3.4% in those with severe left ventricular dysfunction and 7.3% in HFrEF patients (Table 1). Therefore, EOV was witnessed only in CVD with LVEF impairment (LVEF < 50%) or in HFrEF patients.

Table 1. Etiology and EOV occurrence in the overall study population.

<table>
<thead>
<tr>
<th>Total CPETs analyzed and n (%) of EOV</th>
<th>Total number</th>
<th>EOV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CPETs analyzed and n (%) of EOV</td>
<td>4907</td>
<td>273 (5.5)</td>
</tr>
<tr>
<td>Athletes</td>
<td>35</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Other healthy subjects</td>
<td>29</td>
<td>0 (0)</td>
</tr>
<tr>
<td>CVD with preserved LV systolic function (LVEF >50%)</td>
<td>14</td>
<td>0 (0)</td>
</tr>
<tr>
<td>HfP EF (LVEF >50%)</td>
<td>55</td>
<td>0 (0)</td>
</tr>
<tr>
<td>CVD with mild to moderate impairment of LV systolic function (LVEF 40% and <50%)</td>
<td>157</td>
<td>3 (1.9)</td>
</tr>
<tr>
<td>CVD with severe impairment of LV systolic function (LVEF ≤40%)</td>
<td>1613</td>
<td>56 (3.4)</td>
</tr>
<tr>
<td>HFrEF (LVEF ≤40%)</td>
<td>2903</td>
<td>214 (7.3)</td>
</tr>
<tr>
<td>Recent HXT</td>
<td>101</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Table 2. demographic, clinical, echocardiographic, CPET and medical characteristic of HFrEF patients with and without EOV.

<table>
<thead>
<tr>
<th>With EOV (n=214)</th>
<th>Without EOV (n=2694)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>61±9</td>
<td>58±10</td>
</tr>
<tr>
<td>Male (%)</td>
<td>213 (91)</td>
<td>2347 (80)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25±3</td>
<td>26±4</td>
</tr>
<tr>
<td>Etiology of HF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHD (%)</td>
<td>128 (8)</td>
<td>1510 (92)</td>
</tr>
<tr>
<td>ICD (%)</td>
<td>83 (7)</td>
<td>1162 (93)</td>
</tr>
<tr>
<td>VHD (%)</td>
<td>3 (15)</td>
<td>17 (85)</td>
</tr>
<tr>
<td>NYHA class (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYHA 1 (%)</td>
<td>10 (2)</td>
<td>463 (98)</td>
</tr>
<tr>
<td>NYHA 2 (%)</td>
<td>112 (7)</td>
<td>1667 (93)</td>
</tr>
<tr>
<td>NYHA 3 (%)</td>
<td>92 (13)</td>
<td>564 (86)</td>
</tr>
<tr>
<td>Sinus rhythm (%)</td>
<td>193 (82)</td>
<td>2475 (84)</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>22±8</td>
<td>27±8</td>
</tr>
<tr>
<td>DecT (msec)</td>
<td>147±47</td>
<td>171±54</td>
</tr>
<tr>
<td>Beta-blockers: n (%)</td>
<td>148 (63)</td>
<td>2013 (75)</td>
</tr>
<tr>
<td>ACE-inhibitors: n (%)</td>
<td>214 (92)</td>
<td>2452 (93)</td>
</tr>
<tr>
<td>Loop diuretics: n (%)</td>
<td>220 (94)</td>
<td>2401 (89)</td>
</tr>
<tr>
<td>Loop diuretics daily dose</td>
<td>50±12</td>
<td>37±8</td>
</tr>
<tr>
<td>Peak VO₂ (ml/kg/min)</td>
<td>12.9±3</td>
<td>15.3±4</td>
</tr>
<tr>
<td>Percentage of predicted peak VO₂ (%)</td>
<td>48±14</td>
<td>55±14</td>
</tr>
<tr>
<td>VE/VO₂ slope (%)</td>
<td>32±6</td>
<td>38±10</td>
</tr>
<tr>
<td>Peak RER (%)</td>
<td>1.13±0.09</td>
<td>1.14±0.09</td>
</tr>
</tbody>
</table>

Mean value ± SD for continuous values or percentage for categorical values. CPET = cardiopulmonary exercise testing; EOV = exertional oscillatory ventilation; BMI = body mass index; NYHA = New York Heart Association; HFrEF = heart failure; IHD = ischemic heart disease; ICD = idiopathic cardiomyopathy; VBD = valvular heart disease; LVEF = left ventricular ejection fraction; DecT = trans-mitral deceleration time; ACE = angiotensin converting enzyme; VO₂ = oxygen consumption; VE/VO₂ slope = exertional relationship between ventilation (VE) and carbon dioxide (VCO₂); RER = respiratory exchange ratio (i.e., peak VO₂/VO₂ ratio).
In contrast with EURO-EX trial, EOV definition and CPET inter-
capacity [4]. In our experience, a mixture of healthy subject and
latory instability during exercise [12-15].
higher level of risk, not readily apparent when assessing aerobic
heterogeneity of its definition and different techniques of measures
that EOV might be related to hemodynamic derangement or venti-
PO2: mean peak VO2 was =19±4.7 ml/kg/min.)
At multivariable logistic analysis for EOV in HFrEF patients.
Five resting clinical variables were selected: age, LVEF, DecT,
NYHA class, body mass index, and cardiac rhythm at the moment
of CPET (Table 3). EOV was more commonly seen in older
patients, in advanced NYHA class, in those with more depressed
LVEF, and shorter DecT, and in sinus rhythm.

Discussion

Main findings were: 1) Kremser’s EOV was noticed only in
CVD and HFrEF patients; 2) of note, EOV was observed only in
patients with impaired left ventricular (LV) systolic function; 3)
percentage of EOV was superior in HFrEF patients; 4) rarely, EOV
occurs in HFrEF patients with preserved exercise capacity (peak
VO2> 14 ml/kg/min.); 5) at multivariate analysis in HFrEF, demo-
graphic and clinical variables were selected, and those with older
age, advanced NYHA class, more depression of systolic and dias-
tolic function in the presence sinus rhythm at time of CPET were
more prone to develop EOV.

Only one experience calculated EOV prevalence, though in
healthy subjects with a broad range of cardiovascular risk factors:
in the EURO-EX trial [4], EOV was detected in 17%, and it was
associated with a poor CPET performance and altered gas
exchange profile. Although not proven, EOV can “unmask” a
higher level of risk, not readily apparent when assessing aerobic
capacity [4]. In our experience, a mixture of healthy subject and
CVD patients was enrolled, with healthy subject less represented.
In contrast with EURO-EX trial, EOV definition and CPET inter-
ruption criteria were dissimilar. Thus, these two experiences are
poorly comparable; nevertheless, EOV was detected only in CVD
patients with LV dysfunction and/or in HFrEF. Thus, we confirm
that EOV might be related to hemodynamic derangement or venti-
latory instability during exercise [12-15].

EOV has been shown to be a strong predictor of mortality in
HFrEF [1-3]. In this setting, prevalence is widespread, ranging from
7 to 51% [16-28]. The variance of EOV might originate from the
heterogeneity of its definition and different techniques of measures
[29]: four original EOV descriptions [10,17,26,29] have been rec-
nommendated but many modifications are allowed. These four original
EOV accounts have been reported in 23, 13, 6 and 2 experiences,
respectively, with a mean prevalence of 28%, 37%, 35% and 50%.
A “relatively” low prevalence of EOV was documented in
HFrEF, in our study. Generally, we used to prescribe CPET when
clinical stable condition, early mobilization or exercise training,
and HF-saving therapeutic goals have been attained [30-32]. On
the contrary, CPET is postponed in more disabled patients, i.e. in
those with overt HFrEF or those with concomitant diseases, with
advanced disease, disable and with complex clinical status or
altered acid-base/ionic disequilibrium [12-14,33]. Thus, CPET is
usually recommended only for the ‘best’ ones.
EOV was also noticed in those with preserved exercise capacity,
with mean peak VO2 of more than 14 ml/kg/min.: these shock-
ing findings solicitate further investigations. Finally, EOV appears
more frequently in elderly HFrEF patients [33].

Limitations

Limitations deserve mention: i) EOV was defined, according to
Kremser et al.’s criteria [10]; other EOV definition’s criteria
might produce different rate of occurrence; ii) prevalence recorded
from a single center data-base could be limited, as CPET protocol
modality, execution type and criteria of for exercise testing termina-
tion were homogeneous.

Conclusions

Kremser’s EOV was observed in patients, and in those with
CVD and systolic function impairment. Moreover, as EOV
impacts prognosis in HFrEF patients, its occurrence can modify
prognostic-decision models; in HFrEF, it is important to identify
those are more prone EOV. However, more studies are needed to
tackle the EOV prevalence in different CVD conditions and in nor-
mal subjects.

References

Cardiol 2016;206;S13-5.
parameters in heart failure patients with and without exercise

Table 3. Logistic regression analysis for EOV prediction in HFrEF, using significant resting variables.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>χ²</th>
<th>p</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF</td>
<td>24.45</td>
<td><0.0001</td>
<td>0.942</td>
<td>0.920-0.968</td>
</tr>
<tr>
<td>DecT</td>
<td>5.19</td>
<td>0.0226</td>
<td>0.996</td>
<td>0.982-0.999</td>
</tr>
<tr>
<td>Age</td>
<td>8.95</td>
<td>0.0028</td>
<td>1.027</td>
<td>1.009-1.044</td>
</tr>
<tr>
<td>BMI</td>
<td>4.42</td>
<td>0.0355</td>
<td>0.965</td>
<td>0.925-0.997</td>
</tr>
<tr>
<td>Sinus rhythm</td>
<td>14.11</td>
<td>0.0002</td>
<td>0.490</td>
<td>0.266-0.660</td>
</tr>
<tr>
<td>NYHA class</td>
<td>14.89</td>
<td><0.0001</td>
<td>1.729</td>
<td>1.309-2.848</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence of interval; see also Table 2 for abbreviations.
oscillatory ventilation—a systematic review and descriptive meta-analysis. Int J Cardiol 2015;182:476-86.